includes/clientside/static/crypto.js
changeset 1227 bdac73ed481e
parent 843 4415e50e4e84
--- a/includes/clientside/static/crypto.js	Sun Mar 28 21:49:26 2010 -0400
+++ b/includes/clientside/static/crypto.js	Sun Mar 28 23:10:46 2010 -0400
@@ -188,471 +188,471 @@
 md_q1=t; md_q2=t; md_q3=t; md_r=t; md_r1=t; md_r2=t; md_tt=t; //used in mod_()
 
 primes=t; pows=t; s_i=t; s_i2=t; s_R=t; s_rm=t; s_q=t; s_n1=t; 
-  s_a=t; s_r2=t; s_n=t; s_b=t; s_d=t; s_x1=t; s_x2=t, s_aa=t; //used in randTruePrime_()
+	s_a=t; s_r2=t; s_n=t; s_b=t; s_d=t; s_x1=t; s_x2=t, s_aa=t; //used in randTruePrime_()
 
 ////////////////////////////////////////////////////////////////////////////////////////
 
 //return array of all primes less than integer n
 function findPrimes(n) {
-  var i,s,p,ans;
-  s=new Array(n);
-  for (i=0;i<n;i++)
-    s[i]=0;
-  s[0]=2;
-  p=0;    //first p elements of s are primes, the rest are a sieve
-  for(;s[p]<n;) {                  //s[p] is the pth prime
-    for(i=s[p]*s[p]; i<n; i+=s[p]) //mark multiples of s[p]
-      s[i]=1;
-    p++;
-    s[p]=s[p-1]+1;
-    for(; s[p]<n && s[s[p]]; s[p]++); //find next prime (where s[p]==0)
-  }
-  ans=new Array(p);
-  for(i=0;i<p;i++)
-    ans[i]=s[i];
-  return ans;
+	var i,s,p,ans;
+	s=new Array(n);
+	for (i=0;i<n;i++)
+		s[i]=0;
+	s[0]=2;
+	p=0;    //first p elements of s are primes, the rest are a sieve
+	for(;s[p]<n;) {                  //s[p] is the pth prime
+		for(i=s[p]*s[p]; i<n; i+=s[p]) //mark multiples of s[p]
+			s[i]=1;
+		p++;
+		s[p]=s[p-1]+1;
+		for(; s[p]<n && s[s[p]]; s[p]++); //find next prime (where s[p]==0)
+	}
+	ans=new Array(p);
+	for(i=0;i<p;i++)
+		ans[i]=s[i];
+	return ans;
 }
 
 //does a single round of Miller-Rabin base b consider x to be a possible prime?
 //x is a bigInt, and b is an integer
 function millerRabin(x,b) {
-  var i,j,k,s;
+	var i,j,k,s;
 
-  if (mr_x1.length!=x.length) {
-    mr_x1=dup(x);
-    mr_r=dup(x);
-    mr_a=dup(x);
-  }
+	if (mr_x1.length!=x.length) {
+		mr_x1=dup(x);
+		mr_r=dup(x);
+		mr_a=dup(x);
+	}
 
-  copyInt_(mr_a,b);
-  copy_(mr_r,x);
-  copy_(mr_x1,x);
+	copyInt_(mr_a,b);
+	copy_(mr_r,x);
+	copy_(mr_x1,x);
 
-  addInt_(mr_r,-1);
-  addInt_(mr_x1,-1);
+	addInt_(mr_r,-1);
+	addInt_(mr_x1,-1);
 
-  //s=the highest power of two that divides mr_r
-  k=0;
-  for (i=0;i<mr_r.length;i++)
-    for (j=1;j<mask;j<<=1)
-      if (x[i] & j) {
-        s=(k<mr_r.length+bpe ? k : 0); 
-         i=mr_r.length;
-         j=mask;
-      } else
-        k++;
+	//s=the highest power of two that divides mr_r
+	k=0;
+	for (i=0;i<mr_r.length;i++)
+		for (j=1;j<mask;j<<=1)
+			if (x[i] & j) {
+				s=(k<mr_r.length+bpe ? k : 0); 
+ 				i=mr_r.length;
+ 				j=mask;
+			} else
+				k++;
 
-  if (s)                
-    rightShift_(mr_r,s);
+	if (s)                
+		rightShift_(mr_r,s);
 
-  powMod_(mr_a,mr_r,x);
+	powMod_(mr_a,mr_r,x);
 
-  if (!equalsInt(mr_a,1) && !equals(mr_a,mr_x1)) {
-    j=1;
-    while (j<=s-1 && !equals(mr_a,mr_x1)) {
-      squareMod_(mr_a,x);
-      if (equalsInt(mr_a,1)) {
-        return 0;
-      }
-      j++;
-    }
-    if (!equals(mr_a,mr_x1)) {
-      return 0;
-    }
-  }
-  return 1;  
+	if (!equalsInt(mr_a,1) && !equals(mr_a,mr_x1)) {
+		j=1;
+		while (j<=s-1 && !equals(mr_a,mr_x1)) {
+			squareMod_(mr_a,x);
+			if (equalsInt(mr_a,1)) {
+				return 0;
+			}
+			j++;
+		}
+		if (!equals(mr_a,mr_x1)) {
+			return 0;
+		}
+	}
+	return 1;  
 }
 
 //returns how many bits long the bigInt is, not counting leading zeros.
 function bitSize(x) {
-  var j,z,w;
-  for (j=x.length-1; (x[j]==0) && (j>0); j--);
-  for (z=0,w=x[j]; w; (w>>=1),z++);
-  z+=bpe*j;
-  return z;
+	var j,z,w;
+	for (j=x.length-1; (x[j]==0) && (j>0); j--);
+	for (z=0,w=x[j]; w; (w>>=1),z++);
+	z+=bpe*j;
+	return z;
 }
 
 //return a copy of x with at least n elements, adding leading zeros if needed
 function expand(x,n) {
-  var ans=int2bigInt(0,(x.length>n ? x.length : n)*bpe,0);
-  copy_(ans,x);
-  return ans;
+	var ans=int2bigInt(0,(x.length>n ? x.length : n)*bpe,0);
+	copy_(ans,x);
+	return ans;
 }
 
 //return a k-bit true random prime using Maurer's algorithm.
 function randTruePrime(k) {
-  var ans=int2bigInt(0,k,0);
-  randTruePrime_(ans,k);
-  return bigint_trim(ans,1);
+	var ans=int2bigInt(0,k,0);
+	randTruePrime_(ans,k);
+	return bigint_trim(ans,1);
 }
 
 //return a new bigInt equal to (x mod n) for bigInts x and n.
 function mod(x,n) {
-  var ans=dup(x);
-  mod_(ans,n);
-  return bigint_trim(ans,1);
+	var ans=dup(x);
+	mod_(ans,n);
+	return bigint_trim(ans,1);
 }
 
 //return (x+n) where x is a bigInt and n is an integer.
 function addInt(x,n) {
-  var ans=expand(x,x.length+1);
-  addInt_(ans,n);
-  return bigint_trim(ans,1);
+	var ans=expand(x,x.length+1);
+	addInt_(ans,n);
+	return bigint_trim(ans,1);
 }
 
 //return x*y for bigInts x and y. This is faster when y<x.
 function mult(x,y) {
-  var ans=expand(x,x.length+y.length);
-  mult_(ans,y);
-  return bigint_trim(ans,1);
+	var ans=expand(x,x.length+y.length);
+	mult_(ans,y);
+	return bigint_trim(ans,1);
 }
 
 //return (x**y mod n) where x,y,n are bigInts and ** is exponentiation.  0**0=1. Faster for odd n.
 function powMod(x,y,n) {
-  var ans=expand(x,n.length);  
-  powMod_(ans,bigint_trim(y,2),bigint_trim(n,2),0);  //this should work without the trim, but doesn't
-  return bigint_trim(ans,1);
+	var ans=expand(x,n.length);  
+	powMod_(ans,bigint_trim(y,2),bigint_trim(n,2),0);  //this should work without the trim, but doesn't
+	return bigint_trim(ans,1);
 }
 
 //return (x-y) for bigInts x and y.  Negative answers will be 2s complement
 function sub(x,y) {
-  var ans=expand(x,(x.length>y.length ? x.length+1 : y.length+1)); 
-  sub_(ans,y);
-  return bigint_trim(ans,1);
+	var ans=expand(x,(x.length>y.length ? x.length+1 : y.length+1)); 
+	sub_(ans,y);
+	return bigint_trim(ans,1);
 }
 
 //return (x+y) for bigInts x and y.  
 function add(x,y) {
-  var ans=expand(x,(x.length>y.length ? x.length+1 : y.length+1)); 
-  add_(ans,y);
-  return bigint_trim(ans,1);
+	var ans=expand(x,(x.length>y.length ? x.length+1 : y.length+1)); 
+	add_(ans,y);
+	return bigint_trim(ans,1);
 }
 
 //return (x**(-1) mod n) for bigInts x and n.  If no inverse exists, it returns null
 function inverseMod(x,n) {
-  var ans=expand(x,n.length); 
-  var s;
-  s=inverseMod_(ans,n);
-  return s ? bigint_trim(ans,1) : null;
+	var ans=expand(x,n.length); 
+	var s;
+	s=inverseMod_(ans,n);
+	return s ? bigint_trim(ans,1) : null;
 }
 
 //return (x*y mod n) for bigInts x,y,n.  For greater speed, let y<x.
 function multMod(x,y,n) {
-  var ans=expand(x,n.length);
-  multMod_(ans,y,n);
-  return bigint_trim(ans,1);
+	var ans=expand(x,n.length);
+	multMod_(ans,y,n);
+	return bigint_trim(ans,1);
 }
 
 //generate a k-bit true random prime using Maurer's algorithm,
 //and put it into ans.  The bigInt ans must be large enough to hold it.
 function randTruePrime_(ans,k) {
-  var c,m,pm,dd,j,r,B,divisible,z,zz,recSize;
+	var c,m,pm,dd,j,r,B,divisible,z,zz,recSize;
 
-  if (primes.length==0)
-    primes=findPrimes(30000);  //check for divisibility by primes <=30000
+	if (primes.length==0)
+		primes=findPrimes(30000);  //check for divisibility by primes <=30000
 
-  if (pows.length==0) {
-    pows=new Array(512);
-    for (j=0;j<512;j++) {
-      pows[j]=Math.pow(2,j/511.-1.);
-    }
-  }
+	if (pows.length==0) {
+		pows=new Array(512);
+		for (j=0;j<512;j++) {
+			pows[j]=Math.pow(2,j/511.-1.);
+		}
+	}
 
-  //c and m should be tuned for a particular machine and value of k, to maximize speed
-  c=0.1;  //c=0.1 in HAC
-  m=20;   //generate this k-bit number by first recursively generating a number that has between k/2 and k-m bits
-  recLimit=20; //stop recursion when k <=recLimit.  Must have recLimit >= 2
+	//c and m should be tuned for a particular machine and value of k, to maximize speed
+	c=0.1;  //c=0.1 in HAC
+	m=20;   //generate this k-bit number by first recursively generating a number that has between k/2 and k-m bits
+	recLimit=20; //stop recursion when k <=recLimit.  Must have recLimit >= 2
 
-  if (s_i2.length!=ans.length) {
-    s_i2=dup(ans);
-    s_R =dup(ans);
-    s_n1=dup(ans);
-    s_r2=dup(ans);
-    s_d =dup(ans);
-    s_x1=dup(ans);
-    s_x2=dup(ans);
-    s_b =dup(ans);
-    s_n =dup(ans);
-    s_i =dup(ans);
-    s_rm=dup(ans);
-    s_q =dup(ans);
-    s_a =dup(ans);
-    s_aa=dup(ans);
-  }
+	if (s_i2.length!=ans.length) {
+		s_i2=dup(ans);
+		s_R =dup(ans);
+		s_n1=dup(ans);
+		s_r2=dup(ans);
+		s_d =dup(ans);
+		s_x1=dup(ans);
+		s_x2=dup(ans);
+		s_b =dup(ans);
+		s_n =dup(ans);
+		s_i =dup(ans);
+		s_rm=dup(ans);
+		s_q =dup(ans);
+		s_a =dup(ans);
+		s_aa=dup(ans);
+	}
 
-  if (k <= recLimit) {  //generate small random primes by trial division up to its square root
-    pm=(1<<((k+2)>>1))-1; //pm is binary number with all ones, just over sqrt(2^k)
-    copyInt_(ans,0);
-    for (dd=1;dd;) {
-      dd=0;
-      ans[0]= 1 | (1<<(k-1)) | Math.floor(Math.random()*(1<<k));  //random, k-bit, odd integer, with msb 1
-      for (j=1;(j<primes.length) && ((primes[j]&pm)==primes[j]);j++) { //trial division by all primes 3...sqrt(2^k)
-        if (0==(ans[0]%primes[j])) {
-          dd=1;
-          break;
-        }
-      }
-    }
-    carry_(ans);
-    return;
-  }
+	if (k <= recLimit) {  //generate small random primes by trial division up to its square root
+		pm=(1<<((k+2)>>1))-1; //pm is binary number with all ones, just over sqrt(2^k)
+		copyInt_(ans,0);
+		for (dd=1;dd;) {
+			dd=0;
+			ans[0]= 1 | (1<<(k-1)) | Math.floor(Math.random()*(1<<k));  //random, k-bit, odd integer, with msb 1
+			for (j=1;(j<primes.length) && ((primes[j]&pm)==primes[j]);j++) { //trial division by all primes 3...sqrt(2^k)
+				if (0==(ans[0]%primes[j])) {
+					dd=1;
+					break;
+				}
+			}
+		}
+		carry_(ans);
+		return;
+	}
 
-  B=c*k*k;    //try small primes up to B (or all the primes[] array if the largest is less than B).
-  if (k>2*m)  //generate this k-bit number by first recursively generating a number that has between k/2 and k-m bits
-    for (r=1; k-k*r<=m; )
-      r=pows[Math.floor(Math.random()*512)];   //r=Math.pow(2,Math.random()-1);
-  else
-    r=.5;
+	B=c*k*k;    //try small primes up to B (or all the primes[] array if the largest is less than B).
+	if (k>2*m)  //generate this k-bit number by first recursively generating a number that has between k/2 and k-m bits
+		for (r=1; k-k*r<=m; )
+			r=pows[Math.floor(Math.random()*512)];   //r=Math.pow(2,Math.random()-1);
+	else
+		r=.5;
 
-  //simulation suggests the more complex algorithm using r=.333 is only slightly faster.
+	//simulation suggests the more complex algorithm using r=.333 is only slightly faster.
 
-  recSize=Math.floor(r*k)+1;
+	recSize=Math.floor(r*k)+1;
 
-  randTruePrime_(s_q,recSize);
-  copyInt_(s_i2,0);
-  s_i2[Math.floor((k-2)/bpe)] |= (1<<((k-2)%bpe));   //s_i2=2^(k-2)
-  divide_(s_i2,s_q,s_i,s_rm);                        //s_i=floor((2^(k-1))/(2q))
+	randTruePrime_(s_q,recSize);
+	copyInt_(s_i2,0);
+	s_i2[Math.floor((k-2)/bpe)] |= (1<<((k-2)%bpe));   //s_i2=2^(k-2)
+	divide_(s_i2,s_q,s_i,s_rm);                        //s_i=floor((2^(k-1))/(2q))
 
-  z=bitSize(s_i);
+	z=bitSize(s_i);
 
-  for (;;) {
-    for (;;) {  //generate z-bit numbers until one falls in the range [0,s_i-1]
-      randBigInt_(s_R,z,0);
-      if (greater(s_i,s_R))
-        break;
-    }                //now s_R is in the range [0,s_i-1]
-    addInt_(s_R,1);  //now s_R is in the range [1,s_i]
-    add_(s_R,s_i);   //now s_R is in the range [s_i+1,2*s_i]
+	for (;;) {
+		for (;;) {  //generate z-bit numbers until one falls in the range [0,s_i-1]
+			randBigInt_(s_R,z,0);
+			if (greater(s_i,s_R))
+				break;
+		}                //now s_R is in the range [0,s_i-1]
+		addInt_(s_R,1);  //now s_R is in the range [1,s_i]
+		add_(s_R,s_i);   //now s_R is in the range [s_i+1,2*s_i]
 
-    copy_(s_n,s_q);
-    mult_(s_n,s_R); 
-    multInt_(s_n,2);
-    addInt_(s_n,1);    //s_n=2*s_R*s_q+1
-    
-    copy_(s_r2,s_R);
-    multInt_(s_r2,2);  //s_r2=2*s_R
+		copy_(s_n,s_q);
+		mult_(s_n,s_R); 
+		multInt_(s_n,2);
+		addInt_(s_n,1);    //s_n=2*s_R*s_q+1
+		
+		copy_(s_r2,s_R);
+		multInt_(s_r2,2);  //s_r2=2*s_R
 
-    //check s_n for divisibility by small primes up to B
-    for (divisible=0,j=0; (j<primes.length) && (primes[j]<B); j++)
-      if (modInt(s_n,primes[j])==0) {
-        divisible=1;
-        break;
-      }      
+		//check s_n for divisibility by small primes up to B
+		for (divisible=0,j=0; (j<primes.length) && (primes[j]<B); j++)
+			if (modInt(s_n,primes[j])==0) {
+				divisible=1;
+				break;
+			}      
 
-    if (!divisible)    //if it passes small primes check, then try a single Miller-Rabin base 2
-      if (!millerRabin(s_n,2)) //this line represents 75% of the total runtime for randTruePrime_ 
-        divisible=1;
+		if (!divisible)    //if it passes small primes check, then try a single Miller-Rabin base 2
+			if (!millerRabin(s_n,2)) //this line represents 75% of the total runtime for randTruePrime_ 
+				divisible=1;
 
-    if (!divisible) {  //if it passes that test, continue checking s_n
-      addInt_(s_n,-3);
-      for (j=s_n.length-1;(s_n[j]==0) && (j>0); j--);  //strip leading zeros
-      for (zz=0,w=s_n[j]; w; (w>>=1),zz++);
-      zz+=bpe*j;                             //zz=number of bits in s_n, ignoring leading zeros
-      for (;;) {  //generate z-bit numbers until one falls in the range [0,s_n-1]
-        randBigInt_(s_a,zz,0);
-        if (greater(s_n,s_a))
-          break;
-      }                //now s_a is in the range [0,s_n-1]
-      addInt_(s_n,3);  //now s_a is in the range [0,s_n-4]
-      addInt_(s_a,2);  //now s_a is in the range [2,s_n-2]
-      copy_(s_b,s_a);
-      copy_(s_n1,s_n);
-      addInt_(s_n1,-1);
-      powMod_(s_b,s_n1,s_n);   //s_b=s_a^(s_n-1) modulo s_n
-      addInt_(s_b,-1);
-      if (isZero(s_b)) {
-        copy_(s_b,s_a);
-        powMod_(s_b,s_r2,s_n);
-        addInt_(s_b,-1);
-        copy_(s_aa,s_n);
-        copy_(s_d,s_b);
-        GCD_(s_d,s_n);  //if s_b and s_n are relatively prime, then s_n is a prime
-        if (equalsInt(s_d,1)) {
-          copy_(ans,s_aa);
-          return;     //if we've made it this far, then s_n is absolutely guaranteed to be prime
-        }
-      }
-    }
-  }
+		if (!divisible) {  //if it passes that test, continue checking s_n
+			addInt_(s_n,-3);
+			for (j=s_n.length-1;(s_n[j]==0) && (j>0); j--);  //strip leading zeros
+			for (zz=0,w=s_n[j]; w; (w>>=1),zz++);
+			zz+=bpe*j;                             //zz=number of bits in s_n, ignoring leading zeros
+			for (;;) {  //generate z-bit numbers until one falls in the range [0,s_n-1]
+				randBigInt_(s_a,zz,0);
+				if (greater(s_n,s_a))
+					break;
+			}                //now s_a is in the range [0,s_n-1]
+			addInt_(s_n,3);  //now s_a is in the range [0,s_n-4]
+			addInt_(s_a,2);  //now s_a is in the range [2,s_n-2]
+			copy_(s_b,s_a);
+			copy_(s_n1,s_n);
+			addInt_(s_n1,-1);
+			powMod_(s_b,s_n1,s_n);   //s_b=s_a^(s_n-1) modulo s_n
+			addInt_(s_b,-1);
+			if (isZero(s_b)) {
+				copy_(s_b,s_a);
+				powMod_(s_b,s_r2,s_n);
+				addInt_(s_b,-1);
+				copy_(s_aa,s_n);
+				copy_(s_d,s_b);
+				GCD_(s_d,s_n);  //if s_b and s_n are relatively prime, then s_n is a prime
+				if (equalsInt(s_d,1)) {
+					copy_(ans,s_aa);
+					return;     //if we've made it this far, then s_n is absolutely guaranteed to be prime
+				}
+			}
+		}
+	}
 }
 
 //Return an n-bit random BigInt (n>=1).  If s=1, then the most significant of those n bits is set to 1.
 function randBigInt(n,s) {
-  var a,b;
-  a=Math.floor((n-1)/bpe)+2; //# array elements to hold the BigInt with a leading 0 element
-  b=int2bigInt(0,0,a);
-  randBigInt_(b,n,s);
-  return b;
+	var a,b;
+	a=Math.floor((n-1)/bpe)+2; //# array elements to hold the BigInt with a leading 0 element
+	b=int2bigInt(0,0,a);
+	randBigInt_(b,n,s);
+	return b;
 }
 
 //Set b to an n-bit random BigInt.  If s=1, then the most significant of those n bits is set to 1.
 //Array b must be big enough to hold the result. Must have n>=1
 function randBigInt_(b,n,s) {
-  var i,a;
-  for (i=0;i<b.length;i++)
-    b[i]=0;
-  a=Math.floor((n-1)/bpe)+1; //# array elements to hold the BigInt
-  for (i=0;i<a;i++) {
-    b[i]=Math.floor(Math.random()*(1<<(bpe-1)));
-  }
-  b[a-1] &= (2<<((n-1)%bpe))-1;
-  if (s==1)
-    b[a-1] |= (1<<((n-1)%bpe));
+	var i,a;
+	for (i=0;i<b.length;i++)
+		b[i]=0;
+	a=Math.floor((n-1)/bpe)+1; //# array elements to hold the BigInt
+	for (i=0;i<a;i++) {
+		b[i]=Math.floor(Math.random()*(1<<(bpe-1)));
+	}
+	b[a-1] &= (2<<((n-1)%bpe))-1;
+	if (s==1)
+		b[a-1] |= (1<<((n-1)%bpe));
 }
 
 //Return the greatest common divisor of bigInts x and y (each with same number of elements).
 function GCD(x,y) {
-  var xc,yc;
-  xc=dup(x);
-  yc=dup(y);
-  GCD_(xc,yc);
-  return xc;
+	var xc,yc;
+	xc=dup(x);
+	yc=dup(y);
+	GCD_(xc,yc);
+	return xc;
 }
 
 //set x to the greatest common divisor of bigInts x and y (each with same number of elements).
 //y is destroyed.
 function GCD_(x,y) {
-  var i,xp,yp,A,B,C,D,q,sing;
-  if (T.length!=x.length)
-    T=dup(x);
+	var i,xp,yp,A,B,C,D,q,sing;
+	if (T.length!=x.length)
+		T=dup(x);
 
-  sing=1;
-  while (sing) { //while y has nonzero elements other than y[0]
-    sing=0;
-    for (i=1;i<y.length;i++) //check if y has nonzero elements other than 0
-      if (y[i]) {
-        sing=1;
-        break;
-      }
-    if (!sing) break; //quit when y all zero elements except possibly y[0]
+	sing=1;
+	while (sing) { //while y has nonzero elements other than y[0]
+		sing=0;
+		for (i=1;i<y.length;i++) //check if y has nonzero elements other than 0
+			if (y[i]) {
+				sing=1;
+				break;
+			}
+		if (!sing) break; //quit when y all zero elements except possibly y[0]
 
-    for (i=x.length;!x[i] && i>=0;i--);  //find most significant element of x
-    xp=x[i];
-    yp=y[i];
-    A=1; B=0; C=0; D=1;
-    while ((yp+C) && (yp+D)) {
-      q =Math.floor((xp+A)/(yp+C));
-      qp=Math.floor((xp+B)/(yp+D));
-      if (q!=qp)
-        break;
-      t= A-q*C;   A=C;   C=t;    //  do (A,B,xp, C,D,yp) = (C,D,yp, A,B,xp) - q*(0,0,0, C,D,yp)      
-      t= B-q*D;   B=D;   D=t;
-      t=xp-q*yp; xp=yp; yp=t;
-    }
-    if (B) {
-      copy_(T,x);
-      linComb_(x,y,A,B); //x=A*x+B*y
-      linComb_(y,T,D,C); //y=D*y+C*T
-    } else {
-      mod_(x,y);
-      copy_(T,x);
-      copy_(x,y);
-      copy_(y,T);
-    } 
-  }
-  if (y[0]==0)
-    return;
-  t=modInt(x,y[0]);
-  copyInt_(x,y[0]);
-  y[0]=t;
-  while (y[0]) {
-    x[0]%=y[0];
-    t=x[0]; x[0]=y[0]; y[0]=t;
-  }
+		for (i=x.length;!x[i] && i>=0;i--);  //find most significant element of x
+		xp=x[i];
+		yp=y[i];
+		A=1; B=0; C=0; D=1;
+		while ((yp+C) && (yp+D)) {
+			q =Math.floor((xp+A)/(yp+C));
+			qp=Math.floor((xp+B)/(yp+D));
+			if (q!=qp)
+				break;
+			t= A-q*C;   A=C;   C=t;    //  do (A,B,xp, C,D,yp) = (C,D,yp, A,B,xp) - q*(0,0,0, C,D,yp)      
+			t= B-q*D;   B=D;   D=t;
+			t=xp-q*yp; xp=yp; yp=t;
+		}
+		if (B) {
+			copy_(T,x);
+			linComb_(x,y,A,B); //x=A*x+B*y
+			linComb_(y,T,D,C); //y=D*y+C*T
+		} else {
+			mod_(x,y);
+			copy_(T,x);
+			copy_(x,y);
+			copy_(y,T);
+		} 
+	}
+	if (y[0]==0)
+		return;
+	t=modInt(x,y[0]);
+	copyInt_(x,y[0]);
+	y[0]=t;
+	while (y[0]) {
+		x[0]%=y[0];
+		t=x[0]; x[0]=y[0]; y[0]=t;
+	}
 }
 
 //do x=x**(-1) mod n, for bigInts x and n.
 //If no inverse exists, it sets x to zero and returns 0, else it returns 1.
 //The x array must be at least as large as the n array.
 function inverseMod_(x,n) {
-  var k=1+2*Math.max(x.length,n.length);
+	var k=1+2*Math.max(x.length,n.length);
 
-  if(!(x[0]&1)  && !(n[0]&1)) {  //if both inputs are even, then inverse doesn't exist
-    copyInt_(x,0);
-    return 0;
-  }
+	if(!(x[0]&1)  && !(n[0]&1)) {  //if both inputs are even, then inverse doesn't exist
+		copyInt_(x,0);
+		return 0;
+	}
 
-  if (eg_u.length!=k) {
-    eg_u=new Array(k);
-    eg_v=new Array(k);
-    eg_A=new Array(k);
-    eg_B=new Array(k);
-    eg_C=new Array(k);
-    eg_D=new Array(k);
-  }
+	if (eg_u.length!=k) {
+		eg_u=new Array(k);
+		eg_v=new Array(k);
+		eg_A=new Array(k);
+		eg_B=new Array(k);
+		eg_C=new Array(k);
+		eg_D=new Array(k);
+	}
 
-  copy_(eg_u,x);
-  copy_(eg_v,n);
-  copyInt_(eg_A,1);
-  copyInt_(eg_B,0);
-  copyInt_(eg_C,0);
-  copyInt_(eg_D,1);
-  for (;;) {
-    while(!(eg_u[0]&1)) {  //while eg_u is even
-      halve_(eg_u);
-      if (!(eg_A[0]&1) && !(eg_B[0]&1)) { //if eg_A==eg_B==0 mod 2
-        halve_(eg_A);
-        halve_(eg_B);      
-      } else {
-        add_(eg_A,n);  halve_(eg_A);
-        sub_(eg_B,x);  halve_(eg_B);
-      }
-    }
+	copy_(eg_u,x);
+	copy_(eg_v,n);
+	copyInt_(eg_A,1);
+	copyInt_(eg_B,0);
+	copyInt_(eg_C,0);
+	copyInt_(eg_D,1);
+	for (;;) {
+		while(!(eg_u[0]&1)) {  //while eg_u is even
+			halve_(eg_u);
+			if (!(eg_A[0]&1) && !(eg_B[0]&1)) { //if eg_A==eg_B==0 mod 2
+				halve_(eg_A);
+				halve_(eg_B);      
+			} else {
+				add_(eg_A,n);  halve_(eg_A);
+				sub_(eg_B,x);  halve_(eg_B);
+			}
+		}
 
-    while (!(eg_v[0]&1)) {  //while eg_v is even
-      halve_(eg_v);
-      if (!(eg_C[0]&1) && !(eg_D[0]&1)) { //if eg_C==eg_D==0 mod 2
-        halve_(eg_C);
-        halve_(eg_D);      
-      } else {
-        add_(eg_C,n);  halve_(eg_C);
-        sub_(eg_D,x);  halve_(eg_D);
-      }
-    }
+		while (!(eg_v[0]&1)) {  //while eg_v is even
+			halve_(eg_v);
+			if (!(eg_C[0]&1) && !(eg_D[0]&1)) { //if eg_C==eg_D==0 mod 2
+				halve_(eg_C);
+				halve_(eg_D);      
+			} else {
+				add_(eg_C,n);  halve_(eg_C);
+				sub_(eg_D,x);  halve_(eg_D);
+			}
+		}
 
-    if (!greater(eg_v,eg_u)) { //eg_v <= eg_u
-      sub_(eg_u,eg_v);
-      sub_(eg_A,eg_C);
-      sub_(eg_B,eg_D);
-    } else {                   //eg_v > eg_u
-      sub_(eg_v,eg_u);
-      sub_(eg_C,eg_A);
-      sub_(eg_D,eg_B);
-    }
-  
-    if (equalsInt(eg_u,0)) {
-      if (negative(eg_C)) //make sure answer is nonnegative
-        add_(eg_C,n);
-      copy_(x,eg_C);
+		if (!greater(eg_v,eg_u)) { //eg_v <= eg_u
+			sub_(eg_u,eg_v);
+			sub_(eg_A,eg_C);
+			sub_(eg_B,eg_D);
+		} else {                   //eg_v > eg_u
+			sub_(eg_v,eg_u);
+			sub_(eg_C,eg_A);
+			sub_(eg_D,eg_B);
+		}
+	
+		if (equalsInt(eg_u,0)) {
+			if (negative(eg_C)) //make sure answer is nonnegative
+				add_(eg_C,n);
+			copy_(x,eg_C);
 
-      if (!equalsInt(eg_v,1)) { //if GCD_(x,n)!=1, then there is no inverse
-        copyInt_(x,0);
-        return 0;
-      }
-      return 1;
-    }
-  }
+			if (!equalsInt(eg_v,1)) { //if GCD_(x,n)!=1, then there is no inverse
+				copyInt_(x,0);
+				return 0;
+			}
+			return 1;
+		}
+	}
 }
 
 //return x**(-1) mod n, for integers x and n.  Return 0 if there is no inverse
 function inverseModInt(x,n) {
-  var a=1,b=0,t;
-  for (;;) {
-    if (x==1) return a;
-    if (x==0) return 0;
-    b-=a*Math.floor(n/x);
-    n%=x;
+	var a=1,b=0,t;
+	for (;;) {
+		if (x==1) return a;
+		if (x==0) return 0;
+		b-=a*Math.floor(n/x);
+		n%=x;
 
-    if (n==1) return b; //to avoid negatives, change this b to n-b, and each -= to +=
-    if (n==0) return 0;
-    a-=b*Math.floor(x/n);
-    x%=n;
-  }
+		if (n==1) return b; //to avoid negatives, change this b to n-b, and each -= to +=
+		if (n==0) return 0;
+		a-=b*Math.floor(x/n);
+		x%=n;
+	}
 }
 
 //this deprecated function is for backward compatibility only. 
 function inverseModInt_(x,n) {
-   return inverseModInt(x,n);
+ 	return inverseModInt(x,n);
 }
 
 
@@ -660,76 +660,76 @@
 //     v = GCD_(x,y) = a*x-b*y
 //The bigInts v, a, b, must have exactly as many elements as the larger of x and y.
 function eGCD_(x,y,v,a,b) {
-  var g=0;
-  var k=Math.max(x.length,y.length);
-  if (eg_u.length!=k) {
-    eg_u=new Array(k);
-    eg_A=new Array(k);
-    eg_B=new Array(k);
-    eg_C=new Array(k);
-    eg_D=new Array(k);
-  }
-  while(!(x[0]&1)  && !(y[0]&1)) {  //while x and y both even
-    halve_(x);
-    halve_(y);
-    g++;
-  }
-  copy_(eg_u,x);
-  copy_(v,y);
-  copyInt_(eg_A,1);
-  copyInt_(eg_B,0);
-  copyInt_(eg_C,0);
-  copyInt_(eg_D,1);
-  for (;;) {
-    while(!(eg_u[0]&1)) {  //while u is even
-      halve_(eg_u);
-      if (!(eg_A[0]&1) && !(eg_B[0]&1)) { //if A==B==0 mod 2
-        halve_(eg_A);
-        halve_(eg_B);      
-      } else {
-        add_(eg_A,y);  halve_(eg_A);
-        sub_(eg_B,x);  halve_(eg_B);
-      }
-    }
+	var g=0;
+	var k=Math.max(x.length,y.length);
+	if (eg_u.length!=k) {
+		eg_u=new Array(k);
+		eg_A=new Array(k);
+		eg_B=new Array(k);
+		eg_C=new Array(k);
+		eg_D=new Array(k);
+	}
+	while(!(x[0]&1)  && !(y[0]&1)) {  //while x and y both even
+		halve_(x);
+		halve_(y);
+		g++;
+	}
+	copy_(eg_u,x);
+	copy_(v,y);
+	copyInt_(eg_A,1);
+	copyInt_(eg_B,0);
+	copyInt_(eg_C,0);
+	copyInt_(eg_D,1);
+	for (;;) {
+		while(!(eg_u[0]&1)) {  //while u is even
+			halve_(eg_u);
+			if (!(eg_A[0]&1) && !(eg_B[0]&1)) { //if A==B==0 mod 2
+				halve_(eg_A);
+				halve_(eg_B);      
+			} else {
+				add_(eg_A,y);  halve_(eg_A);
+				sub_(eg_B,x);  halve_(eg_B);
+			}
+		}
 
-    while (!(v[0]&1)) {  //while v is even
-      halve_(v);
-      if (!(eg_C[0]&1) && !(eg_D[0]&1)) { //if C==D==0 mod 2
-        halve_(eg_C);
-        halve_(eg_D);      
-      } else {
-        add_(eg_C,y);  halve_(eg_C);
-        sub_(eg_D,x);  halve_(eg_D);
-      }
-    }
+		while (!(v[0]&1)) {  //while v is even
+			halve_(v);
+			if (!(eg_C[0]&1) && !(eg_D[0]&1)) { //if C==D==0 mod 2
+				halve_(eg_C);
+				halve_(eg_D);      
+			} else {
+				add_(eg_C,y);  halve_(eg_C);
+				sub_(eg_D,x);  halve_(eg_D);
+			}
+		}
 
-    if (!greater(v,eg_u)) { //v<=u
-      sub_(eg_u,v);
-      sub_(eg_A,eg_C);
-      sub_(eg_B,eg_D);
-    } else {                //v>u
-      sub_(v,eg_u);
-      sub_(eg_C,eg_A);
-      sub_(eg_D,eg_B);
-    }
-    if (equalsInt(eg_u,0)) {
-      if (negative(eg_C)) {   //make sure a (C)is nonnegative
-        add_(eg_C,y);
-        sub_(eg_D,x);
-      }
-      multInt_(eg_D,-1);  ///make sure b (D) is nonnegative
-      copy_(a,eg_C);
-      copy_(b,eg_D);
-      leftShift_(v,g);
-      return;
-    }
-  }
+		if (!greater(v,eg_u)) { //v<=u
+			sub_(eg_u,v);
+			sub_(eg_A,eg_C);
+			sub_(eg_B,eg_D);
+		} else {                //v>u
+			sub_(v,eg_u);
+			sub_(eg_C,eg_A);
+			sub_(eg_D,eg_B);
+		}
+		if (equalsInt(eg_u,0)) {
+			if (negative(eg_C)) {   //make sure a (C)is nonnegative
+				add_(eg_C,y);
+				sub_(eg_D,x);
+			}
+			multInt_(eg_D,-1);  ///make sure b (D) is nonnegative
+			copy_(a,eg_C);
+			copy_(b,eg_D);
+			leftShift_(v,g);
+			return;
+		}
+	}
 }
 
 
 //is bigInt x negative?
 function negative(x) {
-  return ((x[x.length-1]>>(bpe-1))&1);
+	return ((x[x.length-1]>>(bpe-1))&1);
 }
 
 
@@ -737,39 +737,39 @@
 //x and y are nonnegative bigInts
 //shift is a nonnegative integer
 function greaterShift(x,y,shift) {
-  var kx=x.length, ky=y.length;
-  k=((kx+shift)<ky) ? (kx+shift) : ky;
-  for (i=ky-1-shift; i<kx && i>=0; i++) 
-    if (x[i]>0)
-      return 1; //if there are nonzeros in x to the left of the first column of y, then x is bigger
-  for (i=kx-1+shift; i<ky; i++)
-    if (y[i]>0)
-      return 0; //if there are nonzeros in y to the left of the first column of x, then x is not bigger
-  for (i=k-1; i>=shift; i--)
-    if      (x[i-shift]>y[i]) return 1;
-    else if (x[i-shift]<y[i]) return 0;
-  return 0;
+	var kx=x.length, ky=y.length;
+	k=((kx+shift)<ky) ? (kx+shift) : ky;
+	for (i=ky-1-shift; i<kx && i>=0; i++) 
+		if (x[i]>0)
+			return 1; //if there are nonzeros in x to the left of the first column of y, then x is bigger
+	for (i=kx-1+shift; i<ky; i++)
+		if (y[i]>0)
+			return 0; //if there are nonzeros in y to the left of the first column of x, then x is not bigger
+	for (i=k-1; i>=shift; i--)
+		if      (x[i-shift]>y[i]) return 1;
+		else if (x[i-shift]<y[i]) return 0;
+	return 0;
 }
 
 //is x > y? (x and y both nonnegative)
 function greater(x,y) {
-  var i;
-  var k=(x.length<y.length) ? x.length : y.length;
+	var i;
+	var k=(x.length<y.length) ? x.length : y.length;
 
-  for (i=x.length;i<y.length;i++)
-    if (y[i])
-      return 0;  //y has more digits
+	for (i=x.length;i<y.length;i++)
+		if (y[i])
+			return 0;  //y has more digits
 
-  for (i=y.length;i<x.length;i++)
-    if (x[i])
-      return 1;  //x has more digits
+	for (i=y.length;i<x.length;i++)
+		if (x[i])
+			return 1;  //x has more digits
 
-  for (i=k-1;i>=0;i--)
-    if (x[i]>y[i])
-      return 1;
-    else if (x[i]<y[i])
-      return 0;
-  return 0;
+	for (i=k-1;i>=0;i--)
+		if (x[i]>y[i])
+			return 1;
+		else if (x[i]<y[i])
+			return 0;
+	return 0;
 }
 
 //divide x by y giving quotient q and remainder r.  (q=floor(x/y),  r=x mod y).  All 4 are bigints.
@@ -778,87 +778,87 @@
 //q and r must be arrays that are exactly the same length as x. (Or q can have more).
 //Must have x.length >= y.length >= 2.
 function divide_(x,y,q,r) {
-  var kx, ky;
-  var i,j,y1,y2,c,a,b;
-  copy_(r,x);
-  for (ky=y.length;y[ky-1]==0;ky--); //ky is number of elements in y, not including leading zeros
+	var kx, ky;
+	var i,j,y1,y2,c,a,b;
+	copy_(r,x);
+	for (ky=y.length;y[ky-1]==0;ky--); //ky is number of elements in y, not including leading zeros
 
-  //normalize: ensure the most significant element of y has its highest bit set  
-  b=y[ky-1];
-  for (a=0; b; a++)
-    b>>=1;  
-  a=bpe-a;  //a is how many bits to shift so that the high order bit of y is leftmost in its array element
-  leftShift_(y,a);  //multiply both by 1<<a now, then divide both by that at the end
-  leftShift_(r,a);
+	//normalize: ensure the most significant element of y has its highest bit set  
+	b=y[ky-1];
+	for (a=0; b; a++)
+		b>>=1;  
+	a=bpe-a;  //a is how many bits to shift so that the high order bit of y is leftmost in its array element
+	leftShift_(y,a);  //multiply both by 1<<a now, then divide both by that at the end
+	leftShift_(r,a);
 
-  //Rob Visser discovered a bug: the following line was originally just before the normalization.
-  for (kx=r.length;r[kx-1]==0 && kx>ky;kx--); //kx is number of elements in normalized x, not including leading zeros
+	//Rob Visser discovered a bug: the following line was originally just before the normalization.
+	for (kx=r.length;r[kx-1]==0 && kx>ky;kx--); //kx is number of elements in normalized x, not including leading zeros
 
-  copyInt_(q,0);                      // q=0
-  while (!greaterShift(y,r,kx-ky)) {  // while (leftShift_(y,kx-ky) <= r) {
-    subShift_(r,y,kx-ky);             //   r=r-leftShift_(y,kx-ky)
-    q[kx-ky]++;                       //   q[kx-ky]++;
-  }                                   // }
+	copyInt_(q,0);                      // q=0
+	while (!greaterShift(y,r,kx-ky)) {  // while (leftShift_(y,kx-ky) <= r) {
+		subShift_(r,y,kx-ky);             //   r=r-leftShift_(y,kx-ky)
+		q[kx-ky]++;                       //   q[kx-ky]++;
+	}                                   // }
 
-  for (i=kx-1; i>=ky; i--) {
-    if (r[i]==y[ky-1])
-      q[i-ky]=mask;
-    else
-      q[i-ky]=Math.floor((r[i]*radix+r[i-1])/y[ky-1]);	
+	for (i=kx-1; i>=ky; i--) {
+		if (r[i]==y[ky-1])
+			q[i-ky]=mask;
+		else
+			q[i-ky]=Math.floor((r[i]*radix+r[i-1])/y[ky-1]);	
 
-    //The following for(;;) loop is equivalent to the commented while loop, 
-    //except that the uncommented version avoids overflow.
-    //The commented loop comes from HAC, which assumes r[-1]==y[-1]==0
-    //  while (q[i-ky]*(y[ky-1]*radix+y[ky-2]) > r[i]*radix*radix+r[i-1]*radix+r[i-2])
-    //    q[i-ky]--;    
-    for (;;) {
-      y2=(ky>1 ? y[ky-2] : 0)*q[i-ky];
-      c=y2>>bpe;
-      y2=y2 & mask;
-      y1=c+q[i-ky]*y[ky-1];
-      c=y1>>bpe;
-      y1=y1 & mask;
+		//The following for(;;) loop is equivalent to the commented while loop, 
+		//except that the uncommented version avoids overflow.
+		//The commented loop comes from HAC, which assumes r[-1]==y[-1]==0
+		//  while (q[i-ky]*(y[ky-1]*radix+y[ky-2]) > r[i]*radix*radix+r[i-1]*radix+r[i-2])
+		//    q[i-ky]--;    
+		for (;;) {
+			y2=(ky>1 ? y[ky-2] : 0)*q[i-ky];
+			c=y2>>bpe;
+			y2=y2 & mask;
+			y1=c+q[i-ky]*y[ky-1];
+			c=y1>>bpe;
+			y1=y1 & mask;
 
-      if (c==r[i] ? y1==r[i-1] ? y2>(i>1 ? r[i-2] : 0) : y1>r[i-1] : c>r[i]) 
-        q[i-ky]--;
-      else
-        break;
-    }
+			if (c==r[i] ? y1==r[i-1] ? y2>(i>1 ? r[i-2] : 0) : y1>r[i-1] : c>r[i]) 
+				q[i-ky]--;
+			else
+				break;
+		}
 
-    linCombShift_(r,y,-q[i-ky],i-ky);    //r=r-q[i-ky]*leftShift_(y,i-ky)
-    if (negative(r)) {
-      addShift_(r,y,i-ky);         //r=r+leftShift_(y,i-ky)
-      q[i-ky]--;
-    }
-  }
+		linCombShift_(r,y,-q[i-ky],i-ky);    //r=r-q[i-ky]*leftShift_(y,i-ky)
+		if (negative(r)) {
+			addShift_(r,y,i-ky);         //r=r+leftShift_(y,i-ky)
+			q[i-ky]--;
+		}
+	}
 
-  rightShift_(y,a);  //undo the normalization step
-  rightShift_(r,a);  //undo the normalization step
+	rightShift_(y,a);  //undo the normalization step
+	rightShift_(r,a);  //undo the normalization step
 }
 
 //do carries and borrows so each element of the bigInt x fits in bpe bits.
 function carry_(x) {
-  var i,k,c,b;
-  k=x.length;
-  c=0;
-  for (i=0;i<k;i++) {
-    c+=x[i];
-    b=0;
-    if (c<0) {
-      b=-(c>>bpe);
-      c+=b*radix;
-    }
-    x[i]=c & mask;
-    c=(c>>bpe)-b;
-  }
+	var i,k,c,b;
+	k=x.length;
+	c=0;
+	for (i=0;i<k;i++) {
+		c+=x[i];
+		b=0;
+		if (c<0) {
+			b=-(c>>bpe);
+			c+=b*radix;
+		}
+		x[i]=c & mask;
+		c=(c>>bpe)-b;
+	}
 }
 
 //return x mod n for bigInt x and integer n.
 function modInt(x,n) {
-  var i,c=0;
-  for (i=x.length-1; i>=0; i--)
-    c=(c*radix+x[i])%n;
-  return c;
+	var i,c=0;
+	for (i=x.length-1; i>=0; i--)
+		c=(c*radix+x[i])%n;
+	return c;
 }
 
 //convert the integer t into a bigInt with at least the given number of bits.
@@ -866,12 +866,12 @@
 //Pad the array with leading zeros so that it has at least minSize elements.
 //There will always be at least one leading 0 element.
 function int2bigInt(t,bits,minSize) {   
-  var i,k;
-  k=Math.ceil(bits/bpe)+1;
-  k=minSize>k ? minSize : k;
-  buff=new Array(k);
-  copyInt_(buff,t);
-  return buff;
+	var i,k;
+	k=Math.ceil(bits/bpe)+1;
+	k=minSize>k ? minSize : k;
+	buff=new Array(k);
+	copyInt_(buff,t);
+	return buff;
 }
 
 //return the bigInt given a string representation in a given base.  
@@ -879,472 +879,472 @@
 //If base=-1, then it reads in a space-separated list of array elements in decimal.
 //The array will always have at least one leading zero, unless base=-1.
 function str2bigInt(s,base,minSize) {
-  var d, i, j, x, y, kk;
-  var k=s.length;
-  if (base==-1) { //comma-separated list of array elements in decimal
-    x=new Array(0);
-    for (;;) {
-      y=new Array(x.length+1);
-      for (i=0;i<x.length;i++)
-        y[i+1]=x[i];
-      y[0]=parseInt(s,10);
-      x=y;
-      d=s.indexOf(',',0);
-      if (d<1) 
-        break;
-      s=s.substring(d+1);
-      if (s.length==0)
-        break;
-    }
-    if (x.length<minSize) {
-      y=new Array(minSize);
-      copy_(y,x);
-      return y;
-    }
-    return x;
-  }
+	var d, i, j, x, y, kk;
+	var k=s.length;
+	if (base==-1) { //comma-separated list of array elements in decimal
+		x=new Array(0);
+		for (;;) {
+			y=new Array(x.length+1);
+			for (i=0;i<x.length;i++)
+				y[i+1]=x[i];
+			y[0]=parseInt(s,10);
+			x=y;
+			d=s.indexOf(',',0);
+			if (d<1) 
+				break;
+			s=s.substring(d+1);
+			if (s.length==0)
+				break;
+		}
+		if (x.length<minSize) {
+			y=new Array(minSize);
+			copy_(y,x);
+			return y;
+		}
+		return x;
+	}
 
-  x=int2bigInt(0,base*k,0);
-  for (i=0;i<k;i++) {
-    d=digitsStr.indexOf(s.substring(i,i+1),0);
-    if (base<=36 && d>=36)  //convert lowercase to uppercase if base<=36
-      d-=26;
-    if (d<base && d>=0) {   //ignore illegal characters
-      multInt_(x,base);
-      addInt_(x,d);
-    }
-  }
+	x=int2bigInt(0,base*k,0);
+	for (i=0;i<k;i++) {
+		d=digitsStr.indexOf(s.substring(i,i+1),0);
+		if (base<=36 && d>=36)  //convert lowercase to uppercase if base<=36
+			d-=26;
+		if (d<base && d>=0) {   //ignore illegal characters
+			multInt_(x,base);
+			addInt_(x,d);
+		}
+	}
 
-  for (k=x.length;k>0 && !x[k-1];k--); //strip off leading zeros
-  k=minSize>k+1 ? minSize : k+1;
-  y=new Array(k);
-  kk=k<x.length ? k : x.length;
-  for (i=0;i<kk;i++)
-    y[i]=x[i];
-  for (;i<k;i++)
-    y[i]=0;
-  return y;
+	for (k=x.length;k>0 && !x[k-1];k--); //strip off leading zeros
+	k=minSize>k+1 ? minSize : k+1;
+	y=new Array(k);
+	kk=k<x.length ? k : x.length;
+	for (i=0;i<kk;i++)
+		y[i]=x[i];
+	for (;i<k;i++)
+		y[i]=0;
+	return y;
 }
 
 //is bigint x equal to integer y?
 //y must have less than bpe bits
 function equalsInt(x,y) {
-  var i;
-  if (x[0]!=y)
-    return 0;
-  for (i=1;i<x.length;i++)
-    if (x[i])
-      return 0;
-  return 1;
+	var i;
+	if (x[0]!=y)
+		return 0;
+	for (i=1;i<x.length;i++)
+		if (x[i])
+			return 0;
+	return 1;
 }
 
 //are bigints x and y equal?
 //this works even if x and y are different lengths and have arbitrarily many leading zeros
 function equals(x,y) {
-  var i;
-  var k=x.length<y.length ? x.length : y.length;
-  for (i=0;i<k;i++)
-    if (x[i]!=y[i])
-      return 0;
-  if (x.length>y.length) {
-    for (;i<x.length;i++)
-      if (x[i])
-        return 0;
-  } else {
-    for (;i<y.length;i++)
-      if (y[i])
-        return 0;
-  }
-  return 1;
+	var i;
+	var k=x.length<y.length ? x.length : y.length;
+	for (i=0;i<k;i++)
+		if (x[i]!=y[i])
+			return 0;
+	if (x.length>y.length) {
+		for (;i<x.length;i++)
+			if (x[i])
+				return 0;
+	} else {
+		for (;i<y.length;i++)
+			if (y[i])
+				return 0;
+	}
+	return 1;
 }
 
 //is the bigInt x equal to zero?
 function isZero(x) {
-  var i;
-  for (i=0;i<x.length;i++)
-    if (x[i])
-      return 0;
-  return 1;
+	var i;
+	for (i=0;i<x.length;i++)
+		if (x[i])
+			return 0;
+	return 1;
 }
 
 //convert a bigInt into a string in a given base, from base 2 up to base 95.
 //Base -1 prints the contents of the array representing the number.
 function bigInt2str(x,base) {
-  var i,t,s="";
+	var i,t,s="";
 
-  if (s6.length!=x.length) 
-    s6=dup(x);
-  else
-    copy_(s6,x);
+	if (s6.length!=x.length) 
+		s6=dup(x);
+	else
+		copy_(s6,x);
 
-  if (base==-1) { //return the list of array contents
-    for (i=x.length-1;i>0;i--)
-      s+=x[i]+',';
-    s+=x[0];
-  }
-  else { //return it in the given base
-    while (!isZero(s6)) {
-      t=divInt_(s6,base);  //t=s6 % base; s6=floor(s6/base);
-      s=digitsStr.substring(t,t+1)+s;
-    }
-  }
-  if (s.length==0)
-    s="0";
-  return s;
+	if (base==-1) { //return the list of array contents
+		for (i=x.length-1;i>0;i--)
+			s+=x[i]+',';
+		s+=x[0];
+	}
+	else { //return it in the given base
+		while (!isZero(s6)) {
+			t=divInt_(s6,base);  //t=s6 % base; s6=floor(s6/base);
+			s=digitsStr.substring(t,t+1)+s;
+		}
+	}
+	if (s.length==0)
+		s="0";
+	return s;
 }
 
 //returns a duplicate of bigInt x
 function dup(x) {
-  var i;
-  buff=new Array(x.length);
-  copy_(buff,x);
-  return buff;
+	var i;
+	buff=new Array(x.length);
+	copy_(buff,x);
+	return buff;
 }
 
 //do x=y on bigInts x and y.  x must be an array at least as big as y (not counting the leading zeros in y).
 function copy_(x,y) {
-  var i;
-  var k=x.length<y.length ? x.length : y.length;
-  for (i=0;i<k;i++)
-    x[i]=y[i];
-  for (i=k;i<x.length;i++)
-    x[i]=0;
+	var i;
+	var k=x.length<y.length ? x.length : y.length;
+	for (i=0;i<k;i++)
+		x[i]=y[i];
+	for (i=k;i<x.length;i++)
+		x[i]=0;
 }
 
 //do x=y on bigInt x and integer y.  
 function copyInt_(x,n) {
-  var i,c;
-  for (c=n,i=0;i<x.length;i++) {
-    x[i]=c & mask;
-    c>>=bpe;
-  }
+	var i,c;
+	for (c=n,i=0;i<x.length;i++) {
+		x[i]=c & mask;
+		c>>=bpe;
+	}
 }
 
 //do x=x+n where x is a bigInt and n is an integer.
 //x must be large enough to hold the result.
 function addInt_(x,n) {
-  var i,k,c,b;
-  x[0]+=n;
-  k=x.length;
-  c=0;
-  for (i=0;i<k;i++) {
-    c+=x[i];
-    b=0;
-    if (c<0) {
-      b=-(c>>bpe);
-      c+=b*radix;
-    }
-    x[i]=c & mask;
-    c=(c>>bpe)-b;
-    if (!c) return; //stop carrying as soon as the carry_ is zero
-  }
+	var i,k,c,b;
+	x[0]+=n;
+	k=x.length;
+	c=0;
+	for (i=0;i<k;i++) {
+		c+=x[i];
+		b=0;
+		if (c<0) {
+			b=-(c>>bpe);
+			c+=b*radix;
+		}
+		x[i]=c & mask;
+		c=(c>>bpe)-b;
+		if (!c) return; //stop carrying as soon as the carry_ is zero
+	}
 }
 
 //right shift bigInt x by n bits.  0 <= n < bpe.
 function rightShift_(x,n) {
-  var i;
-  var k=Math.floor(n/bpe);
-  if (k) {
-    for (i=0;i<x.length-k;i++) //right shift x by k elements
-      x[i]=x[i+k];
-    for (;i<x.length;i++)
-      x[i]=0;
-    n%=bpe;
-  }
-  for (i=0;i<x.length-1;i++) {
-    x[i]=mask & ((x[i+1]<<(bpe-n)) | (x[i]>>n));
-  }
-  x[i]>>=n;
+	var i;
+	var k=Math.floor(n/bpe);
+	if (k) {
+		for (i=0;i<x.length-k;i++) //right shift x by k elements
+			x[i]=x[i+k];
+		for (;i<x.length;i++)
+			x[i]=0;
+		n%=bpe;
+	}
+	for (i=0;i<x.length-1;i++) {
+		x[i]=mask & ((x[i+1]<<(bpe-n)) | (x[i]>>n));
+	}
+	x[i]>>=n;
 }
 
 //do x=floor(|x|/2)*sgn(x) for bigInt x in 2's complement
 function halve_(x) {
-  var i;
-  for (i=0;i<x.length-1;i++) {
-    x[i]=mask & ((x[i+1]<<(bpe-1)) | (x[i]>>1));
-  }
-  x[i]=(x[i]>>1) | (x[i] & (radix>>1));  //most significant bit stays the same
+	var i;
+	for (i=0;i<x.length-1;i++) {
+		x[i]=mask & ((x[i+1]<<(bpe-1)) | (x[i]>>1));
+	}
+	x[i]=(x[i]>>1) | (x[i] & (radix>>1));  //most significant bit stays the same
 }
 
 //left shift bigInt x by n bits.
 function leftShift_(x,n) {
-  var i;
-  var k=Math.floor(n/bpe);
-  if (k) {
-    for (i=x.length; i>=k; i--) //left shift x by k elements
-      x[i]=x[i-k];
-    for (;i>=0;i--)
-      x[i]=0;  
-    n%=bpe;
-  }
-  if (!n)
-    return;
-  for (i=x.length-1;i>0;i--) {
-    x[i]=mask & ((x[i]<<n) | (x[i-1]>>(bpe-n)));
-  }
-  x[i]=mask & (x[i]<<n);
+	var i;
+	var k=Math.floor(n/bpe);
+	if (k) {
+		for (i=x.length; i>=k; i--) //left shift x by k elements
+			x[i]=x[i-k];
+		for (;i>=0;i--)
+			x[i]=0;  
+		n%=bpe;
+	}
+	if (!n)
+		return;
+	for (i=x.length-1;i>0;i--) {
+		x[i]=mask & ((x[i]<<n) | (x[i-1]>>(bpe-n)));
+	}
+	x[i]=mask & (x[i]<<n);
 }
 
 //do x=x*n where x is a bigInt and n is an integer.
 //x must be large enough to hold the result.
 function multInt_(x,n) {
-  var i,k,c,b;
-  if (!n)
-    return;
-  k=x.length;
-  c=0;
-  for (i=0;i<k;i++) {
-    c+=x[i]*n;
-    b=0;
-    if (c<0) {
-      b=-(c>>bpe);
-      c+=b*radix;
-    }
-    x[i]=c & mask;
-    c=(c>>bpe)-b;
-  }
+	var i,k,c,b;
+	if (!n)
+		return;
+	k=x.length;
+	c=0;
+	for (i=0;i<k;i++) {
+		c+=x[i]*n;
+		b=0;
+		if (c<0) {
+			b=-(c>>bpe);
+			c+=b*radix;
+		}
+		x[i]=c & mask;
+		c=(c>>bpe)-b;
+	}
 }
 
 //do x=floor(x/n) for bigInt x and integer n, and return the remainder
 function divInt_(x,n) {
-  var i,r=0,s;
-  for (i=x.length-1;i>=0;i--) {
-    s=r*radix+x[i];
-    x[i]=Math.floor(s/n);
-    r=s%n;
-  }
-  return r;
+	var i,r=0,s;
+	for (i=x.length-1;i>=0;i--) {
+		s=r*radix+x[i];
+		x[i]=Math.floor(s/n);
+		r=s%n;
+	}
+	return r;
 }
 
 //do the linear combination x=a*x+b*y for bigInts x and y, and integers a and b.
 //x must be large enough to hold the answer.
 function linComb_(x,y,a,b) {
-  var i,c,k,kk;
-  k=x.length<y.length ? x.length : y.length;
-  kk=x.length;
-  for (c=0,i=0;i<k;i++) {
-    c+=a*x[i]+b*y[i];
-    x[i]=c & mask;
-    c>>=bpe;
-  }
-  for (i=k;i<kk;i++) {
-    c+=a*x[i];
-    x[i]=c & mask;
-    c>>=bpe;
-  }
+	var i,c,k,kk;
+	k=x.length<y.length ? x.length : y.length;
+	kk=x.length;
+	for (c=0,i=0;i<k;i++) {
+		c+=a*x[i]+b*y[i];
+		x[i]=c & mask;
+		c>>=bpe;
+	}
+	for (i=k;i<kk;i++) {
+		c+=a*x[i];
+		x[i]=c & mask;
+		c>>=bpe;
+	}
 }
 
 //do the linear combination x=a*x+b*(y<<(ys*bpe)) for bigInts x and y, and integers a, b and ys.
 //x must be large enough to hold the answer.
 function linCombShift_(x,y,b,ys) {
-  var i,c,k,kk;
-  k=x.length<ys+y.length ? x.length : ys+y.length;
-  kk=x.length;
-  for (c=0,i=ys;i<k;i++) {
-    c+=x[i]+b*y[i-ys];
-    x[i]=c & mask;
-    c>>=bpe;
-  }
-  for (i=k;c && i<kk;i++) {
-    c+=x[i];
-    x[i]=c & mask;
-    c>>=bpe;
-  }
+	var i,c,k,kk;
+	k=x.length<ys+y.length ? x.length : ys+y.length;
+	kk=x.length;
+	for (c=0,i=ys;i<k;i++) {
+		c+=x[i]+b*y[i-ys];
+		x[i]=c & mask;
+		c>>=bpe;
+	}
+	for (i=k;c && i<kk;i++) {
+		c+=x[i];
+		x[i]=c & mask;
+		c>>=bpe;
+	}
 }
 
 //do x=x+(y<<(ys*bpe)) for bigInts x and y, and integers a,b and ys.
 //x must be large enough to hold the answer.
 function addShift_(x,y,ys) {
-  var i,c,k,kk;
-  k=x.length<ys+y.length ? x.length : ys+y.length;
-  kk=x.length;
-  for (c=0,i=ys;i<k;i++) {
-    c+=x[i]+y[i-ys];
-    x[i]=c & mask;
-    c>>=bpe;
-  }
-  for (i=k;c && i<kk;i++) {
-    c+=x[i];
-    x[i]=c & mask;
-    c>>=bpe;
-  }
+	var i,c,k,kk;
+	k=x.length<ys+y.length ? x.length : ys+y.length;
+	kk=x.length;
+	for (c=0,i=ys;i<k;i++) {
+		c+=x[i]+y[i-ys];
+		x[i]=c & mask;
+		c>>=bpe;
+	}
+	for (i=k;c && i<kk;i++) {
+		c+=x[i];
+		x[i]=c & mask;
+		c>>=bpe;
+	}
 }
 
 //do x=x-(y<<(ys*bpe)) for bigInts x and y, and integers a,b and ys.
 //x must be large enough to hold the answer.
 function subShift_(x,y,ys) {
-  var i,c,k,kk;
-  k=x.length<ys+y.length ? x.length : ys+y.length;
-  kk=x.length;
-  for (c=0,i=ys;i<k;i++) {
-    c+=x[i]-y[i-ys];
-    x[i]=c & mask;
-    c>>=bpe;
-  }
-  for (i=k;c && i<kk;i++) {
-    c+=x[i];
-    x[i]=c & mask;
-    c>>=bpe;
-  }
+	var i,c,k,kk;
+	k=x.length<ys+y.length ? x.length : ys+y.length;
+	kk=x.length;
+	for (c=0,i=ys;i<k;i++) {
+		c+=x[i]-y[i-ys];
+		x[i]=c & mask;
+		c>>=bpe;
+	}
+	for (i=k;c && i<kk;i++) {
+		c+=x[i];
+		x[i]=c & mask;
+		c>>=bpe;
+	}
 }
 
 //do x=x-y for bigInts x and y.
 //x must be large enough to hold the answer.
 //negative answers will be 2s complement
 function sub_(x,y) {
-  var i,c,k,kk;
-  k=x.length<y.length ? x.length : y.length;
-  for (c=0,i=0;i<k;i++) {
-    c+=x[i]-y[i];
-    x[i]=c & mask;
-    c>>=bpe;
-  }
-  for (i=k;c && i<x.length;i++) {
-    c+=x[i];
-    x[i]=c & mask;
-    c>>=bpe;
-  }
+	var i,c,k,kk;
+	k=x.length<y.length ? x.length : y.length;
+	for (c=0,i=0;i<k;i++) {
+		c+=x[i]-y[i];
+		x[i]=c & mask;
+		c>>=bpe;
+	}
+	for (i=k;c && i<x.length;i++) {
+		c+=x[i];
+		x[i]=c & mask;
+		c>>=bpe;
+	}
 }
 
 //do x=x+y for bigInts x and y.
 //x must be large enough to hold the answer.
 function add_(x,y) {
-  var i,c,k,kk;
-  k=x.length<y.length ? x.length : y.length;
-  for (c=0,i=0;i<k;i++) {
-    c+=x[i]+y[i];
-    x[i]=c & mask;
-    c>>=bpe;
-  }
-  for (i=k;c && i<x.length;i++) {
-    c+=x[i];
-    x[i]=c & mask;
-    c>>=bpe;
-  }
+	var i,c,k,kk;
+	k=x.length<y.length ? x.length : y.length;
+	for (c=0,i=0;i<k;i++) {
+		c+=x[i]+y[i];
+		x[i]=c & mask;
+		c>>=bpe;
+	}
+	for (i=k;c && i<x.length;i++) {
+		c+=x[i];
+		x[i]=c & mask;
+		c>>=bpe;
+	}
 }
 
 //do x=x*y for bigInts x and y.  This is faster when y<x.
 function mult_(x,y) {
-  var i;
-  if (ss.length!=2*x.length)
-    ss=new Array(2*x.length);
-  copyInt_(ss,0);
-  for (i=0;i<y.length;i++)
-    if (y[i])
-      linCombShift_(ss,x,y[i],i);   //ss=1*ss+y[i]*(x<<(i*bpe))
-  copy_(x,ss);
+	var i;
+	if (ss.length!=2*x.length)
+		ss=new Array(2*x.length);
+	copyInt_(ss,0);
+	for (i=0;i<y.length;i++)
+		if (y[i])
+			linCombShift_(ss,x,y[i],i);   //ss=1*ss+y[i]*(x<<(i*bpe))
+	copy_(x,ss);
 }
 
 //do x=x mod n for bigInts x and n.
 function mod_(x,n) {
-  if (s4.length!=x.length)
-    s4=dup(x);
-  else
-    copy_(s4,x);
-  if (s5.length!=x.length)
-    s5=dup(x);  
-  divide_(s4,n,s5,x);  //x = remainder of s4 / n
+	if (s4.length!=x.length)
+		s4=dup(x);
+	else
+		copy_(s4,x);
+	if (s5.length!=x.length)
+		s5=dup(x);  
+	divide_(s4,n,s5,x);  //x = remainder of s4 / n
 }
 
 //do x=x*y mod n for bigInts x,y,n.
 //for greater speed, let y<x.
 function multMod_(x,y,n) {
-  var i;
-  if (s0.length!=2*x.length)
-    s0=new Array(2*x.length);
-  copyInt_(s0,0);
-  for (i=0;i<y.length;i++)
-    if (y[i])
-      linCombShift_(s0,x,y[i],i);   //s0=1*s0+y[i]*(x<<(i*bpe))
-  mod_(s0,n);
-  copy_(x,s0);
+	var i;
+	if (s0.length!=2*x.length)
+		s0=new Array(2*x.length);
+	copyInt_(s0,0);
+	for (i=0;i<y.length;i++)
+		if (y[i])
+			linCombShift_(s0,x,y[i],i);   //s0=1*s0+y[i]*(x<<(i*bpe))
+	mod_(s0,n);
+	copy_(x,s0);
 }
 
 //do x=x*x mod n for bigInts x,n.
 function squareMod_(x,n) {
-  var i,j,d,c,kx,kn,k;
-  for (kx=x.length; kx>0 && !x[kx-1]; kx--);  //ignore leading zeros in x
-  k=kx>n.length ? 2*kx : 2*n.length; //k=# elements in the product, which is twice the elements in the larger of x and n
-  if (s0.length!=k) 
-    s0=new Array(k);
-  copyInt_(s0,0);
-  for (i=0;i<kx;i++) {
-    c=s0[2*i]+x[i]*x[i];
-    s0[2*i]=c & mask;
-    c>>=bpe;
-    for (j=i+1;j<kx;j++) {
-      c=s0[i+j]+2*x[i]*x[j]+c;
-      s0[i+j]=(c & mask);
-      c>>=bpe;
-    }
-    s0[i+kx]=c;
-  }
-  mod_(s0,n);
-  copy_(x,s0);
+	var i,j,d,c,kx,kn,k;
+	for (kx=x.length; kx>0 && !x[kx-1]; kx--);  //ignore leading zeros in x
+	k=kx>n.length ? 2*kx : 2*n.length; //k=# elements in the product, which is twice the elements in the larger of x and n
+	if (s0.length!=k) 
+		s0=new Array(k);
+	copyInt_(s0,0);
+	for (i=0;i<kx;i++) {
+		c=s0[2*i]+x[i]*x[i];
+		s0[2*i]=c & mask;
+		c>>=bpe;
+		for (j=i+1;j<kx;j++) {
+			c=s0[i+j]+2*x[i]*x[j]+c;
+			s0[i+j]=(c & mask);
+			c>>=bpe;
+		}
+		s0[i+kx]=c;
+	}
+	mod_(s0,n);
+	copy_(x,s0);
 }
 
 //return x with exactly k leading zero elements
 function bigint_trim(x,k) {
-  var i,y;
-  for (i=x.length; i>0 && !x[i-1]; i--);
-  y=new Array(i+k);
-  copy_(y,x);
-  return y;
+	var i,y;
+	for (i=x.length; i>0 && !x[i-1]; i--);
+	y=new Array(i+k);
+	copy_(y,x);
+	return y;
 }
 
 //do x=x**y mod n, where x,y,n are bigInts and ** is exponentiation.  0**0=1.
 //this is faster when n is odd.  x usually needs to have as many elements as n.
 function powMod_(x,y,n) {
-  var k1,k2,kn,np;
-  if(s7.length!=n.length)
-    s7=dup(n);
+	var k1,k2,kn,np;
+	if(s7.length!=n.length)
+		s7=dup(n);
 
-  //for even modulus, use a simple square-and-multiply algorithm,
-  //rather than using the more complex Montgomery algorithm.
-  if ((n[0]&1)==0) {
-    copy_(s7,x);
-    copyInt_(x,1);
-    while(!equalsInt(y,0)) {
-      if (y[0]&1)
-        multMod_(x,s7,n);
-      divInt_(y,2);
-      squareMod_(s7,n); 
-    }
-    return;
-  }
+	//for even modulus, use a simple square-and-multiply algorithm,
+	//rather than using the more complex Montgomery algorithm.
+	if ((n[0]&1)==0) {
+		copy_(s7,x);
+		copyInt_(x,1);
+		while(!equalsInt(y,0)) {
+			if (y[0]&1)
+				multMod_(x,s7,n);
+			divInt_(y,2);
+			squareMod_(s7,n); 
+		}
+		return;
+	}
 
-  //calculate np from n for the Montgomery multiplications
-  copyInt_(s7,0);
-  for (kn=n.length;kn>0 && !n[kn-1];kn--);
-  np=radix-inverseModInt(modInt(n,radix),radix);
-  s7[kn]=1;
-  multMod_(x ,s7,n);   // x = x * 2**(kn*bp) mod n
+	//calculate np from n for the Montgomery multiplications
+	copyInt_(s7,0);
+	for (kn=n.length;kn>0 && !n[kn-1];kn--);
+	np=radix-inverseModInt(modInt(n,radix),radix);
+	s7[kn]=1;
+	multMod_(x ,s7,n);   // x = x * 2**(kn*bp) mod n
 
-  if (s3.length!=x.length)
-    s3=dup(x);
-  else
-    copy_(s3,x);
+	if (s3.length!=x.length)
+		s3=dup(x);
+	else
+		copy_(s3,x);
 
-  for (k1=y.length-1;k1>0 & !y[k1]; k1--);  //k1=first nonzero element of y
-  if (y[k1]==0) {  //anything to the 0th power is 1
-    copyInt_(x,1);
-    return;
-  }
-  for (k2=1<<(bpe-1);k2 && !(y[k1] & k2); k2>>=1);  //k2=position of first 1 bit in y[k1]
-  for (;;) {
-    if (!(k2>>=1)) {  //look at next bit of y
-      k1--;
-      if (k1<0) {
-        mont_(x,one,n,np);
-        return;
-      }
-      k2=1<<(bpe-1);
-    }    
-    mont_(x,x,n,np);
+	for (k1=y.length-1;k1>0 & !y[k1]; k1--);  //k1=first nonzero element of y
+	if (y[k1]==0) {  //anything to the 0th power is 1
+		copyInt_(x,1);
+		return;
+	}
+	for (k2=1<<(bpe-1);k2 && !(y[k1] & k2); k2>>=1);  //k2=position of first 1 bit in y[k1]
+	for (;;) {
+		if (!(k2>>=1)) {  //look at next bit of y
+			k1--;
+			if (k1<0) {
+				mont_(x,one,n,np);
+				return;
+			}
+			k2=1<<(bpe-1);
+		}    
+		mont_(x,x,n,np);
 
-    if (k2 & y[k1]) //if next bit is a 1
-      mont_(x,s3,n,np);
-  }
+		if (k2 & y[k1]) //if next bit is a 1
+			mont_(x,s3,n,np);
+	}
 }    
 
 //do x=x*y*Ri mod n for bigInts x,y,n, 
@@ -1358,48 +1358,48 @@
 //  n is odd
 //  np = -(n^(-1)) mod radix
 function mont_(x,y,n,np) {
-  var i,j,c,ui,t;
-  var kn=n.length;
-  var ky=y.length;
+	var i,j,c,ui,t;
+	var kn=n.length;
+	var ky=y.length;
 
-  if (sa.length!=kn)
-    sa=new Array(kn);
+	if (sa.length!=kn)
+		sa=new Array(kn);
 
-  for (;kn>0 && n[kn-1]==0;kn--); //ignore leading zeros of n
-  //this function sometimes gives wrong answers when the next line is uncommented
-  //for (;ky>0 && y[ky-1]==0;ky--); //ignore leading zeros of y
+	for (;kn>0 && n[kn-1]==0;kn--); //ignore leading zeros of n
+	//this function sometimes gives wrong answers when the next line is uncommented
+	//for (;ky>0 && y[ky-1]==0;ky--); //ignore leading zeros of y
 
-  copyInt_(sa,0);
+	copyInt_(sa,0);
 
-  //the following loop consumes 95% of the runtime for randTruePrime_() and powMod_() for large keys
-  for (i=0; i<kn; i++) {
-    t=sa[0]+x[i]*y[0];
-    ui=((t & mask) * np) & mask;  //the inner "& mask" is needed on Macintosh MSIE, but not windows MSIE
-    c=(t+ui*n[0]) >> bpe;
-    t=x[i];
+	//the following loop consumes 95% of the runtime for randTruePrime_() and powMod_() for large keys
+	for (i=0; i<kn; i++) {
+		t=sa[0]+x[i]*y[0];
+		ui=((t & mask) * np) & mask;  //the inner "& mask" is needed on Macintosh MSIE, but not windows MSIE
+		c=(t+ui*n[0]) >> bpe;
+		t=x[i];
 
-    //do sa=(sa+x[i]*y+ui*n)/b   where b=2**bpe
-    for (j=1;j<ky;j++) { 
-      c+=sa[j]+t*y[j]+ui*n[j];
-      sa[j-1]=c & mask;
-      c>>=bpe;
-    }    
-    for (;j<kn;j++) { 
-      c+=sa[j]+ui*n[j];
-      sa[j-1]=c & mask;
-      c>>=bpe;
-    }    
-    sa[j-1]=c & mask;
-  }
+		//do sa=(sa+x[i]*y+ui*n)/b   where b=2**bpe
+		for (j=1;j<ky;j++) { 
+			c+=sa[j]+t*y[j]+ui*n[j];
+			sa[j-1]=c & mask;
+			c>>=bpe;
+		}    
+		for (;j<kn;j++) { 
+			c+=sa[j]+ui*n[j];
+			sa[j-1]=c & mask;
+			c>>=bpe;
+		}    
+		sa[j-1]=c & mask;
+	}
 
-  if (!greater(n,sa))
-    sub_(sa,n);
-  copy_(x,sa);
+	if (!greater(n,sa))
+		sub_(sa,n);
+	copy_(x,sa);
 }
 
 
 /* rijndael.js      Rijndael Reference Implementation
-   Copyright (c) 2001 Fritz Schneider
+ 	Copyright (c) 2001 Fritz Schneider
  
  This software is provided as-is, without express or implied warranty.  
  Permission to use, copy, modify, distribute or sell this software, with or
@@ -1410,38 +1410,38 @@
  provided with the application or distribution.
 
 
-   As the above disclaimer notes, you are free to use this code however you
-   want. However, I would request that you send me an email 
-   (fritz /at/ cs /dot/ ucsd /dot/ edu) to say hi if you find this code useful
-   or instructional. Seeing that people are using the code acts as 
-   encouragement for me to continue development. If you *really* want to thank
-   me you can buy the book I wrote with Thomas Powell, _JavaScript:
-   _The_Complete_Reference_ :)
+ 	As the above disclaimer notes, you are free to use this code however you
+ 	want. However, I would request that you send me an email 
+ 	(fritz /at/ cs /dot/ ucsd /dot/ edu) to say hi if you find this code useful
+ 	or instructional. Seeing that people are using the code acts as 
+ 	encouragement for me to continue development. If you *really* want to thank
+ 	me you can buy the book I wrote with Thomas Powell, _JavaScript:
+ 	_The_Complete_Reference_ :)
 
-   This code is an UNOPTIMIZED REFERENCE implementation of Rijndael. 
-   If there is sufficient interest I can write an optimized (word-based, 
-   table-driven) version, although you might want to consider using a 
-   compiled language if speed is critical to your application. As it stands,
-   one run of the monte carlo test (10,000 encryptions) can take up to 
-   several minutes, depending upon your processor. You shouldn't expect more
-   than a few kilobytes per second in throughput.
+ 	This code is an UNOPTIMIZED REFERENCE implementation of Rijndael. 
+ 	If there is sufficient interest I can write an optimized (word-based, 
+ 	table-driven) version, although you might want to consider using a 
+ 	compiled language if speed is critical to your application. As it stands,
+ 	one run of the monte carlo test (10,000 encryptions) can take up to 
+ 	several minutes, depending upon your processor. You shouldn't expect more
+ 	than a few kilobytes per second in throughput.
 
-   Also note that there is very little error checking in these functions. 
-   Doing proper error checking is always a good idea, but the ideal 
-   implementation (using the instanceof operator and exceptions) requires
-   IE5+/NS6+, and I've chosen to implement this code so that it is compatible
-   with IE4/NS4. 
+ 	Also note that there is very little error checking in these functions. 
+ 	Doing proper error checking is always a good idea, but the ideal 
+ 	implementation (using the instanceof operator and exceptions) requires
+ 	IE5+/NS6+, and I've chosen to implement this code so that it is compatible
+ 	with IE4/NS4. 
 
-   And finally, because JavaScript doesn't have an explicit byte/char data 
-   type (although JavaScript 2.0 most likely will), when I refer to "byte" 
-   in this code I generally mean "32 bit integer with value in the interval 
-   [0,255]" which I treat as a byte.
+ 	And finally, because JavaScript doesn't have an explicit byte/char data 
+ 	type (although JavaScript 2.0 most likely will), when I refer to "byte" 
+ 	in this code I generally mean "32 bit integer with value in the interval 
+ 	[0,255]" which I treat as a byte.
 
-   See http://www-cse.ucsd.edu/~fritz/rijndael.html for more documentation
-   of the (very simple) API provided by this code.
+ 	See http://www-cse.ucsd.edu/~fritz/rijndael.html for more documentation
+ 	of the (very simple) API provided by this code.
 
-                                               Fritz Schneider
-                                               fritz at cs.ucsd.edu
+ 																							Fritz Schneider
+ 																							fritz at cs.ucsd.edu
  
 */
 
@@ -1460,8 +1460,8 @@
 
 // The number of rounds for the cipher, indexed by [Nk][Nb]
 var roundsArray = [ ,,,,[,,,,10,, 12,, 14],, 
-                        [,,,,12,, 12,, 14],, 
-                        [,,,,14,, 14,, 14] ];
+												[,,,,12,, 12,, 14],, 
+												[,,,,14,, 14,, 14] ];
 
 // The number of bytes to shift by in shiftRow, indexed by [Nb][row]
 var shiftOffsets = [ ,,,,[,1, 2, 3],,[,1, 2, 3],,[,1, 3, 4] ];
@@ -1487,7 +1487,7 @@
 188, 182, 218,  33,  16, 255, 243, 210, 205,  12,  19, 236,  95, 151,  68,  
 23,  196, 167, 126,  61, 100,  93,  25, 115,  96, 129,  79, 220,  34,  42, 
 144, 136,  70, 238, 184,  20, 222,  94,  11, 219, 224,  50,  58,  10,  73,
-  6,  36,  92, 194, 211, 172,  98, 145, 149, 228, 121, 231, 200,  55, 109, 
+	6,  36,  92, 194, 211, 172,  98, 145, 149, 228, 121, 231, 200,  55, 109, 
 141, 213,  78, 169, 108,  86, 244, 234, 101, 122, 174,   8, 186, 120,  37,  
  46,  28, 166, 180, 198, 232, 221, 116,  31,  75, 189, 139, 138, 112,  62, 
 181, 102,  72,   3, 246,  14,  97,  53,  87, 185, 134, 193,  29, 158, 225,
@@ -1518,13 +1518,13 @@
 
 function str_split(string, chunklen)
 {
-  if(!chunklen) chunklen = 1;
-  ret = new Array();
-  for ( i = 0; i < string.length; i+=chunklen )
-  {
-    ret[ret.length] = string.slice(i, i+chunklen);
-  }
-  return ret;
+	if(!chunklen) chunklen = 1;
+	ret = new Array();
+	for ( i = 0; i < string.length; i+=chunklen )
+	{
+		ret[ret.length] = string.slice(i, i+chunklen);
+	}
+	return ret;
 }
 
 // This method circularly shifts the array left by the number of elements
@@ -1533,9 +1533,9 @@
 // elegant solution, but they require IE5.5+, so I chose to do it manually. 
 
 function cyclicShiftLeft(theArray, positions) {
-  var temp = theArray.slice(0, positions);
-  theArray = theArray.slice(positions).concat(temp);
-  return theArray;
+	var temp = theArray.slice(0, positions);
+	theArray = theArray.slice(positions).concat(temp);
+	return theArray;
 }
 
 // Cipher parameters ... do not change these
@@ -1546,8 +1546,8 @@
 // Multiplies the element "poly" of GF(2^8) by x. See the Rijndael spec.
 
 function xtime(poly) {
-  poly <<= 1;
-  return ((poly & 0x100) ? (poly ^ 0x11B) : (poly));
+	poly <<= 1;
+	return ((poly & 0x100) ? (poly ^ 0x11B) : (poly));
 }
 
 // Multiplies the two elements of GF(2^8) together and returns the result.
@@ -1556,13 +1556,13 @@
 // to the result. x and y should be bytes representing elements of GF(2^8)
 
 function mult_GF256(x, y) {
-  var bit, result = 0;
-  
-  for (bit = 1; bit < 256; bit *= 2, y = xtime(y)) {
-    if (x & bit) 
-      result ^= y;
-  }
-  return result;
+	var bit, result = 0;
+	
+	for (bit = 1; bit < 256; bit *= 2, y = xtime(y)) {
+		if (x & bit) 
+			result ^= y;
+	}
+	return result;
 }
 
 // Performs the substitution step of the cipher. State is the 2d array of
@@ -1571,24 +1571,24 @@
 // substitution (anything else)
 
 function byteSub(state, direction) {
-  var S;
-  if (direction == "encrypt")           // Point S to the SBox we're using
-    S = SBox;
-  else
-    S = SBoxInverse;
-  for (var i = 0; i < 4; i++)           // Substitute for every byte in state
-    for (var j = 0; j < Nb; j++)
-       state[i][j] = S[state[i][j]];
+	var S;
+	if (direction == "encrypt")           // Point S to the SBox we're using
+		S = SBox;
+	else
+		S = SBoxInverse;
+	for (var i = 0; i < 4; i++)           // Substitute for every byte in state
+		for (var j = 0; j < Nb; j++)
+ 			state[i][j] = S[state[i][j]];
 }
 
 // Performs the row shifting step of the cipher.
 
 function shiftRow(state, direction) {
-  for (var i=1; i<4; i++)               // Row 0 never shifts
-    if (direction == "encrypt")
-       state[i] = cyclicShiftLeft(state[i], shiftOffsets[Nb][i]);
-    else
-       state[i] = cyclicShiftLeft(state[i], Nb - shiftOffsets[Nb][i]);
+	for (var i=1; i<4; i++)               // Row 0 never shifts
+		if (direction == "encrypt")
+ 			state[i] = cyclicShiftLeft(state[i], shiftOffsets[Nb][i]);
+		else
+ 			state[i] = cyclicShiftLeft(state[i], Nb - shiftOffsets[Nb][i]);
 
 }
 
@@ -1597,34 +1597,34 @@
 // to greatly increase the speed. 
 
 function mixColumn(state, direction) {
-  var b = [];                            // Result of matrix multiplications
-  for (var j = 0; j < Nb; j++) {         // Go through each column...
-    for (var i = 0; i < 4; i++) {        // and for each row in the column...
-      if (direction == "encrypt")
-        b[i] = mult_GF256(state[i][j], 2) ^          // perform mixing
-               mult_GF256(state[(i+1)%4][j], 3) ^ 
-               state[(i+2)%4][j] ^ 
-               state[(i+3)%4][j];
-      else 
-        b[i] = mult_GF256(state[i][j], 0xE) ^ 
-               mult_GF256(state[(i+1)%4][j], 0xB) ^
-               mult_GF256(state[(i+2)%4][j], 0xD) ^
-               mult_GF256(state[(i+3)%4][j], 9);
-    }
-    for (var i = 0; i < 4; i++)          // Place result back into column
-      state[i][j] = b[i];
-  }
+	var b = [];                            // Result of matrix multiplications
+	for (var j = 0; j < Nb; j++) {         // Go through each column...
+		for (var i = 0; i < 4; i++) {        // and for each row in the column...
+			if (direction == "encrypt")
+				b[i] = mult_GF256(state[i][j], 2) ^          // perform mixing
+ 							mult_GF256(state[(i+1)%4][j], 3) ^ 
+ 							state[(i+2)%4][j] ^ 
+ 							state[(i+3)%4][j];
+			else 
+				b[i] = mult_GF256(state[i][j], 0xE) ^ 
+ 							mult_GF256(state[(i+1)%4][j], 0xB) ^
+ 							mult_GF256(state[(i+2)%4][j], 0xD) ^
+ 							mult_GF256(state[(i+3)%4][j], 9);
+		}
+		for (var i = 0; i < 4; i++)          // Place result back into column
+			state[i][j] = b[i];
+	}
 }
 
 // Adds the current round key to the state information. Straightforward.
 
 function addRoundKey(state, roundKey) {
-  for (var j = 0; j < Nb; j++) {                 // Step through columns...
-    state[0][j] ^= (roundKey[j] & 0xFF);         // and XOR
-    state[1][j] ^= ((roundKey[j]>>8) & 0xFF);
-    state[2][j] ^= ((roundKey[j]>>16) & 0xFF);
-    state[3][j] ^= ((roundKey[j]>>24) & 0xFF);
-  }
+	for (var j = 0; j < Nb; j++) {                 // Step through columns...
+		state[0][j] ^= (roundKey[j] & 0xFF);         // and XOR
+		state[1][j] ^= ((roundKey[j]>>8) & 0xFF);
+		state[2][j] ^= ((roundKey[j]>>16) & 0xFF);
+		state[3][j] ^= ((roundKey[j]>>24) & 0xFF);
+	}
 }
 
 // This function creates the expanded key from the input (128/192/256-bit)
@@ -1633,63 +1633,63 @@
 // make up the expanded key.
 
 function keyExpansion(key) {
-  var expandedKey = new Array();
-  var temp;
+	var expandedKey = new Array();
+	var temp;
 
-  // in case the key size or parameters were changed...
-  Nk = keySizeInBits / 32;                   
-  Nb = blockSizeInBits / 32;
-  Nr = roundsArray[Nk][Nb];
+	// in case the key size or parameters were changed...
+	Nk = keySizeInBits / 32;                   
+	Nb = blockSizeInBits / 32;
+	Nr = roundsArray[Nk][Nb];
 
-  for (var j=0; j < Nk; j++)     // Fill in input key first
-    expandedKey[j] = 
-      (key[4*j]) | (key[4*j+1]<<8) | (key[4*j+2]<<16) | (key[4*j+3]<<24);
+	for (var j=0; j < Nk; j++)     // Fill in input key first
+		expandedKey[j] = 
+			(key[4*j]) | (key[4*j+1]<<8) | (key[4*j+2]<<16) | (key[4*j+3]<<24);
 
-  // Now walk down the rest of the array filling in expanded key bytes as
-  // per Rijndael's spec
-  for (j = Nk; j < Nb * (Nr + 1); j++) {    // For each word of expanded key
-    temp = expandedKey[j - 1];
-    if (j % Nk == 0) 
-      temp = ( (SBox[(temp>>8) & 0xFF]) |
-               (SBox[(temp>>16) & 0xFF]<<8) |
-               (SBox[(temp>>24) & 0xFF]<<16) |
-               (SBox[temp & 0xFF]<<24) ) ^ Rcon[Math.floor(j / Nk) - 1];
-    else if (Nk > 6 && j % Nk == 4)
-      temp = (SBox[(temp>>24) & 0xFF]<<24) |
-             (SBox[(temp>>16) & 0xFF]<<16) |
-             (SBox[(temp>>8) & 0xFF]<<8) |
-             (SBox[temp & 0xFF]);
-    expandedKey[j] = expandedKey[j-Nk] ^ temp;
-  }
-  return expandedKey;
+	// Now walk down the rest of the array filling in expanded key bytes as
+	// per Rijndael's spec
+	for (j = Nk; j < Nb * (Nr + 1); j++) {    // For each word of expanded key
+		temp = expandedKey[j - 1];
+		if (j % Nk == 0) 
+			temp = ( (SBox[(temp>>8) & 0xFF]) |
+ 							(SBox[(temp>>16) & 0xFF]<<8) |
+ 							(SBox[(temp>>24) & 0xFF]<<16) |
+ 							(SBox[temp & 0xFF]<<24) ) ^ Rcon[Math.floor(j / Nk) - 1];
+		else if (Nk > 6 && j % Nk == 4)
+			temp = (SBox[(temp>>24) & 0xFF]<<24) |
+ 						(SBox[(temp>>16) & 0xFF]<<16) |
+ 						(SBox[(temp>>8) & 0xFF]<<8) |
+ 						(SBox[temp & 0xFF]);
+		expandedKey[j] = expandedKey[j-Nk] ^ temp;
+	}
+	return expandedKey;
 }
 
 // Rijndael's round functions... 
 
 function Round(state, roundKey) {
-  byteSub(state, "encrypt");
-  shiftRow(state, "encrypt");
-  mixColumn(state, "encrypt");
-  addRoundKey(state, roundKey);
+	byteSub(state, "encrypt");
+	shiftRow(state, "encrypt");
+	mixColumn(state, "encrypt");
+	addRoundKey(state, roundKey);
 }
 
 function InverseRound(state, roundKey) {
-  addRoundKey(state, roundKey);
-  mixColumn(state, "decrypt");
-  shiftRow(state, "decrypt");
-  byteSub(state, "decrypt");
+	addRoundKey(state, roundKey);
+	mixColumn(state, "decrypt");
+	shiftRow(state, "decrypt");
+	byteSub(state, "decrypt");
 }
 
 function FinalRound(state, roundKey) {
-  byteSub(state, "encrypt");
-  shiftRow(state, "encrypt");
-  addRoundKey(state, roundKey);
+	byteSub(state, "encrypt");
+	shiftRow(state, "encrypt");
+	addRoundKey(state, roundKey);
 }
 
 function InverseFinalRound(state, roundKey){
-  addRoundKey(state, roundKey);
-  shiftRow(state, "decrypt");
-  byteSub(state, "decrypt");  
+	addRoundKey(state, roundKey);
+	shiftRow(state, "decrypt");
+	byteSub(state, "decrypt");  
 }
 
 // encrypt is the basic encryption function. It takes parameters
@@ -1698,18 +1698,18 @@
 // keyExpansion(). The ciphertext block is returned as an array of bytes.
 
 function encrypt(block, expandedKey) {
-  var i;  
-  if (!block || block.length*8 != blockSizeInBits)
-     return; 
-  if (!expandedKey)
-     return;
+	var i;  
+	if (!block || block.length*8 != blockSizeInBits)
+ 		return; 
+	if (!expandedKey)
+ 		return;
 
-  block = packBytes(block);
-  addRoundKey(block, expandedKey);
-  for (i=1; i<Nr; i++) 
-    Round(block, expandedKey.slice(Nb*i, Nb*(i+1)));
-  FinalRound(block, expandedKey.slice(Nb*Nr)); 
-  return unpackBytes(block);
+	block = packBytes(block);
+	addRoundKey(block, expandedKey);
+	for (i=1; i<Nr; i++) 
+		Round(block, expandedKey.slice(Nb*i, Nb*(i+1)));
+	FinalRound(block, expandedKey.slice(Nb*Nr)); 
+	return unpackBytes(block);
 }
 
 // decrypt is the basic decryption function. It takes parameters
@@ -1718,18 +1718,18 @@
 // keyExpansion(). The decrypted block is returned as an array of bytes.
 
 function decrypt(block, expandedKey) {
-  var i;
-  if (!block || block.length*8 != blockSizeInBits)
-     return;
-  if (!expandedKey)
-     return;
+	var i;
+	if (!block || block.length*8 != blockSizeInBits)
+ 		return;
+	if (!expandedKey)
+ 		return;
 
-  block = packBytes(block);
-  InverseFinalRound(block, expandedKey.slice(Nb*Nr)); 
-  for (i = Nr - 1; i>0; i--) 
-    InverseRound(block, expandedKey.slice(Nb*i, Nb*(i+1)));
-  addRoundKey(block, expandedKey);
-  return unpackBytes(block);
+	block = packBytes(block);
+	InverseFinalRound(block, expandedKey.slice(Nb*Nr)); 
+	for (i = Nr - 1; i>0; i--) 
+		InverseRound(block, expandedKey.slice(Nb*i, Nb*(i+1)));
+	addRoundKey(block, expandedKey);
+	return unpackBytes(block);
 }
 
 // This function packs an array of bytes into the four row form defined by
@@ -1738,19 +1738,19 @@
 // column 0, row 0 to 3). This function returns a 2d array.
 
 function packBytes(octets) {
-  var state = new Array();
-  if (!octets || octets.length % 4)
-    return;
+	var state = new Array();
+	if (!octets || octets.length % 4)
+		return;
 
-  state[0] = new Array();  state[1] = new Array(); 
-  state[2] = new Array();  state[3] = new Array();
-  for (var j=0; j<octets.length; j+= 4) {
-     state[0][j/4] = octets[j];
-     state[1][j/4] = octets[j+1];
-     state[2][j/4] = octets[j+2];
-     state[3][j/4] = octets[j+3];
-  }
-  return state;  
+	state[0] = new Array();  state[1] = new Array(); 
+	state[2] = new Array();  state[3] = new Array();
+	for (var j=0; j<octets.length; j+= 4) {
+ 		state[0][j/4] = octets[j];
+ 		state[1][j/4] = octets[j+1];
+ 		state[2][j/4] = octets[j+2];
+ 		state[3][j/4] = octets[j+3];
+	}
+	return state;  
 }
 
 // This function unpacks an array of bytes from the four row format preferred
@@ -1759,14 +1759,14 @@
 // This function returns a 1d array of bytes.
 
 function unpackBytes(packed) {
-  var result = new Array();
-  for (var j=0; j<packed[0].length; j++) {
-    result[result.length] = packed[0][j];
-    result[result.length] = packed[1][j];
-    result[result.length] = packed[2][j];
-    result[result.length] = packed[3][j];
-  }
-  return result;
+	var result = new Array();
+	for (var j=0; j<packed[0].length; j++) {
+		result[result.length] = packed[0][j];
+		result[result.length] = packed[1][j];
+		result[result.length] = packed[2][j];
+		result[result.length] = packed[3][j];
+	}
+	return result;
 }
 
 // This function takes a prospective plaintext (string or array of bytes)
@@ -1777,23 +1777,23 @@
 // chose to use the heuristic below. 
 
 function formatPlaintext(plaintext) {
-  var bpb = blockSizeInBits / 8;               // bytes per block
-  var i;
+	var bpb = blockSizeInBits / 8;               // bytes per block
+	var i;
 
-  // if primitive string or String instance
-  if (typeof plaintext == "string" || plaintext.split) {
-    // alert('AUUGH you idiot it\'s NOT A STRING ITS A '+typeof(plaintext)+'!!!');
-    // return false;
-    plaintext = plaintext.split("");
-    // Unicode issues here (ignoring high byte)
-    for (i=0; i<plaintext.length; i++)
-      plaintext[i] = plaintext[i].charCodeAt(0) & 0xFF;
-  } 
+	// if primitive string or String instance
+	if (typeof plaintext == "string" || plaintext.split) {
+		// alert('AUUGH you idiot it\'s NOT A STRING ITS A '+typeof(plaintext)+'!!!');
+		// return false;
+		plaintext = plaintext.split("");
+		// Unicode issues here (ignoring high byte)
+		for (i=0; i<plaintext.length; i++)
+			plaintext[i] = plaintext[i].charCodeAt(0) & 0xFF;
+	} 
 
-  for (i = bpb - (plaintext.length % bpb); i > 0 && i < bpb; i--) 
-    plaintext[plaintext.length] = 0;
-  
-  return plaintext;
+	for (i = bpb - (plaintext.length % bpb); i > 0 && i < bpb; i--) 
+		plaintext[plaintext.length] = 0;
+	
+	return plaintext;
 }
 
 // Returns an array containing "howMany" random bytes. YOU SHOULD CHANGE THIS
@@ -1801,11 +1801,11 @@
 // APPLICATION.
 
 function getRandomBytes(howMany) {
-  var i;
-  var bytes = new Array();
-  for (i=0; i<howMany; i++)
-    bytes[i] = Math.round(Math.random()*255);
-  return bytes;
+	var i;
+	var bytes = new Array();
+	for (i=0; i<howMany; i++)
+		bytes[i] = Math.round(Math.random()*255);
+	return bytes;
 }
 
 // rijndaelEncrypt(plaintext, key, mode)
@@ -1823,43 +1823,43 @@
 // something that returns truly random bits.
 
 function rijndaelEncrypt(plaintext, key, mode) {
-  var expandedKey, i, aBlock;
-  var bpb = blockSizeInBits / 8;          // bytes per block
-  var ct;                                 // ciphertext
+	var expandedKey, i, aBlock;
+	var bpb = blockSizeInBits / 8;          // bytes per block
+	var ct;                                 // ciphertext
 
-  if (typeof plaintext != 'object' || typeof key != 'object')
-  {
-    alert( 'Invalid params\nplaintext: '+typeof(plaintext)+'\nkey: '+typeof(key) );
-    return false;
-  }
-  if (key.length*8 == keySizeInBits+8)
-    key.length = keySizeInBits / 8;
-  if (key.length*8 != keySizeInBits)
-  {
-    alert( 'Key length is bad!\nLength: '+key.length+'\nExpected: '+keySizeInBits / 8 );
-    return false;
-  }
-  if (mode == "CBC")
-    ct = getRandomBytes(bpb);             // get IV
-  else {
-    mode = "ECB";
-    ct = new Array();
-  }
+	if (typeof plaintext != 'object' || typeof key != 'object')
+	{
+		alert( 'Invalid params\nplaintext: '+typeof(plaintext)+'\nkey: '+typeof(key) );
+		return false;
+	}
+	if (key.length*8 == keySizeInBits+8)
+		key.length = keySizeInBits / 8;
+	if (key.length*8 != keySizeInBits)
+	{
+		alert( 'Key length is bad!\nLength: '+key.length+'\nExpected: '+keySizeInBits / 8 );
+		return false;
+	}
+	if (mode == "CBC")
+		ct = getRandomBytes(bpb);             // get IV
+	else {
+		mode = "ECB";
+		ct = new Array();
+	}
 
-  // convert plaintext to byte array and pad with zeros if necessary. 
-  plaintext = formatPlaintext(plaintext);
+	// convert plaintext to byte array and pad with zeros if necessary. 
+	plaintext = formatPlaintext(plaintext);
 
-  expandedKey = keyExpansion(key);
-  
-  for (var block=0; block<plaintext.length / bpb; block++) {
-    aBlock = plaintext.slice(block*bpb, (block+1)*bpb);
-    if (mode == "CBC")
-      for (var i=0; i<bpb; i++) 
-        aBlock[i] ^= ct[block*bpb + i];
-    ct = ct.concat(encrypt(aBlock, expandedKey));
-  }
+	expandedKey = keyExpansion(key);
+	
+	for (var block=0; block<plaintext.length / bpb; block++) {
+		aBlock = plaintext.slice(block*bpb, (block+1)*bpb);
+		if (mode == "CBC")
+			for (var i=0; i<bpb; i++) 
+				aBlock[i] ^= ct[block*bpb + i];
+		ct = ct.concat(encrypt(aBlock, expandedKey));
+	}
 
-  return ct;
+	return ct;
 }
 
 // rijndaelDecrypt(ciphertext, key, mode)
@@ -1874,37 +1874,37 @@
 // to a string of characters, you can use byteArrayToString().
 
 function rijndaelDecrypt(ciphertext, key, mode) {
-  var expandedKey;
-  var bpb = blockSizeInBits / 8;          // bytes per block
-  var pt = new Array();                   // plaintext array
-  var aBlock;                             // a decrypted block
-  var block;                              // current block number
+	var expandedKey;
+	var bpb = blockSizeInBits / 8;          // bytes per block
+	var pt = new Array();                   // plaintext array
+	var aBlock;                             // a decrypted block
+	var block;                              // current block number
 
-  if (!ciphertext || !key || typeof ciphertext == "string")
-    return;
-  if (key.length*8 != keySizeInBits)
-    return; 
-  if (!mode)
-    mode = "ECB";                         // assume ECB if mode omitted
+	if (!ciphertext || !key || typeof ciphertext == "string")
+		return;
+	if (key.length*8 != keySizeInBits)
+		return; 
+	if (!mode)
+		mode = "ECB";                         // assume ECB if mode omitted
 
-  expandedKey = keyExpansion(key);
+	expandedKey = keyExpansion(key);
  
-  // work backwards to accomodate CBC mode 
-  for (block=(ciphertext.length / bpb)-1; block>0; block--) {
-    aBlock = 
-     decrypt(ciphertext.slice(block*bpb,(block+1)*bpb), expandedKey);
-    if (mode == "CBC") 
-      for (var i=0; i<bpb; i++) 
-        pt[(block-1)*bpb + i] = aBlock[i] ^ ciphertext[(block-1)*bpb + i];
-    else 
-      pt = aBlock.concat(pt);
-  }
+	// work backwards to accomodate CBC mode 
+	for (block=(ciphertext.length / bpb)-1; block>0; block--) {
+		aBlock = 
+ 		decrypt(ciphertext.slice(block*bpb,(block+1)*bpb), expandedKey);
+		if (mode == "CBC") 
+			for (var i=0; i<bpb; i++) 
+				pt[(block-1)*bpb + i] = aBlock[i] ^ ciphertext[(block-1)*bpb + i];
+		else 
+			pt = aBlock.concat(pt);
+	}
 
-  // do last block if ECB (skips the IV in CBC)
-  if (mode == "ECB")
-    pt = decrypt(ciphertext.slice(0, bpb), expandedKey).concat(pt);
+	// do last block if ECB (skips the IV in CBC)
+	if (mode == "ECB")
+		pt = decrypt(ciphertext.slice(0, bpb), expandedKey).concat(pt);
 
-  return pt;
+	return pt;
 }
 
 // This method takes a byte array (byteArray) and converts it to a string by
@@ -1916,11 +1916,11 @@
 // values. Roll your own function for more robust functionality :)
 
 function byteArrayToString(byteArray) {
-  var result = "";
-  for ( var i=0; i < byteArray.length; i++ )
-    if (byteArray[i] != 0) 
-      result += '%' + byteArray[i].toString(16);
-  return decodeURIComponent(result);
+	var result = "";
+	for ( var i=0; i < byteArray.length; i++ )
+		if (byteArray[i] != 0) 
+			result += '%' + byteArray[i].toString(16);
+	return decodeURIComponent(result);
 }
 
 // This function takes an array of bytes (byteArray) and converts them
@@ -1930,13 +1930,13 @@
 // string.
 
 function byteArrayToHex(byteArray) {
-  var result = "";
-  if (!byteArray)
-    return;
-  for (var i=0; i<byteArray.length; i++)
-    result += ((byteArray[i]<16) ? "0" : "") + byteArray[i].toString(16);
+	var result = "";
+	if (!byteArray)
+		return;
+	for (var i=0; i<byteArray.length; i++)
+		result += ((byteArray[i]<16) ? "0" : "") + byteArray[i].toString(16);
 
-  return result;
+	return result;
 }
 
 // This function converts a string containing hexadecimal digits to an 
@@ -1945,84 +1945,84 @@
 // function returns an array. 
 
 function hexToByteArray(hexString) {
-  /*
-  var byteArray = [];
-  if (hexString.length % 2)             // must have even length
-    return;
-  if (hexString.indexOf("0x") == 0 || hexString.indexOf("0X") == 0)
-    hexString = hexString.substring(2);
-  for (var i = 0; i<hexString.length; i += 2) 
-    byteArray[Math.floor(i/2)] = parseInt(hexString.slice(i, i+2), 16);
-  return byteArray;
-  */
-  var bytes = new Array();
-  hexString = str_split(hexString, 2);
-  //alert(hexString.toString());
-  //return false;
-  for( var i in hexString )
-  {
-    bytes[bytes.length] = parseInt(hexString[i], 16);
-  }
-  //alert(bytes.toString());
-  return bytes;
+	/*
+	var byteArray = [];
+	if (hexString.length % 2)             // must have even length
+		return;
+	if (hexString.indexOf("0x") == 0 || hexString.indexOf("0X") == 0)
+		hexString = hexString.substring(2);
+	for (var i = 0; i<hexString.length; i += 2) 
+		byteArray[Math.floor(i/2)] = parseInt(hexString.slice(i, i+2), 16);
+	return byteArray;
+	*/
+	var bytes = new Array();
+	hexString = str_split(hexString, 2);
+	//alert(hexString.toString());
+	//return false;
+	for( var i in hexString )
+	{
+		bytes[bytes.length] = parseInt(hexString[i], 16);
+	}
+	//alert(bytes.toString());
+	return bytes;
 }
 
 function stringToByteArray(text)
 {
-  // Modified for Enano 2009-02-16 to be Unicode-safe
-  var result = new Array();
-  text = encodeURIComponent(text);
-  for ( var i = 0; i < text.length; i++ )
-  {
-    var ch = text.charCodeAt(i);
-    var a = false;
-    if ( ch == 37 ) // "%"
-    {
-      var hexch = text.substr(i, 3);
-      if ( hexch.match(/^%[a-f0-9][a-f0-9]$/i) )
-      {
-        result[result.length] = (unescape(hexch)).charCodeAt(0);
-        a = true;
-        i += 2;
-      }
-    }
-    if ( !a )
-    {
-      result[result.length] = ch;
-    }
-  }
-  return result;
+	// Modified for Enano 2009-02-16 to be Unicode-safe
+	var result = new Array();
+	text = encodeURIComponent(text);
+	for ( var i = 0; i < text.length; i++ )
+	{
+		var ch = text.charCodeAt(i);
+		var a = false;
+		if ( ch == 37 ) // "%"
+		{
+			var hexch = text.substr(i, 3);
+			if ( hexch.match(/^%[a-f0-9][a-f0-9]$/i) )
+			{
+				result[result.length] = (unescape(hexch)).charCodeAt(0);
+				a = true;
+				i += 2;
+			}
+		}
+		if ( !a )
+		{
+			result[result.length] = ch;
+		}
+	}
+	return result;
 }
 
 function aes_self_test()
 {
-  //
-  // Encryption test
-  //
-  
-  var str = '';
-  for(i=0;i<keySizeInBits/4;i++)
-  {
-    str+='0';
-  }
-  str = hexToByteArray(str);
-  var ct  = rijndaelEncrypt(str, str, 'ECB');
-  ct      = byteArrayToHex(ct);
-  var v;
-  switch(keySizeInBits)
-  {
-    // These test vectors are for 128-bit block size.
-    case 128:
-      v = '66e94bd4ef8a2c3b884cfa59ca342b2e';
-      break;
-    case 192:
-      v = 'aae06992acbf52a3e8f4a96ec9300bd7aae06992acbf52a3e8f4a96ec9300bd7';
-      break;
-    case 256:
-      v = 'dc95c078a2408989ad48a21492842087dc95c078a2408989ad48a21492842087';
-      break;
-  }
-  return ( ct == v && md5_vm_test() );
+	//
+	// Encryption test
+	//
+	
+	var str = '';
+	for(i=0;i<keySizeInBits/4;i++)
+	{
+		str+='0';
+	}
+	str = hexToByteArray(str);
+	var ct  = rijndaelEncrypt(str, str, 'ECB');
+	ct      = byteArrayToHex(ct);
+	var v;
+	switch(keySizeInBits)
+	{
+		// These test vectors are for 128-bit block size.
+		case 128:
+			v = '66e94bd4ef8a2c3b884cfa59ca342b2e';
+			break;
+		case 192:
+			v = 'aae06992acbf52a3e8f4a96ec9300bd7aae06992acbf52a3e8f4a96ec9300bd7';
+			break;
+		case 256:
+			v = 'dc95c078a2408989ad48a21492842087dc95c078a2408989ad48a21492842087';
+			break;
+	}
+	return ( ct == v && md5_vm_test() );
 }
 
 /*
@@ -2035,21 +2035,21 @@
 // EnanoMath layer: Leemon (frontend to BigInt library by Leemon Baird)
 
 EnanoMathLayers.Leemon = {
-  Base: 10,
-  PowMod: function(a, b, c)
-  {
-    a = str2bigInt(a, this.Base);
-    b = str2bigInt(b, this.Base);
-    c = str2bigInt(c, this.Base);
-    var result = powMod(a, b, c);
-    result = bigInt2str(result, this.Base);
-    return result;
-  },
-  RandomInt: function(bits)
-  {
-    var result = randBigInt(bits);
-    return bigInt2str(result, this.Base);
-  }
+	Base: 10,
+	PowMod: function(a, b, c)
+	{
+		a = str2bigInt(a, this.Base);
+		b = str2bigInt(b, this.Base);
+		c = str2bigInt(c, this.Base);
+		var result = powMod(a, b, c);
+		result = bigInt2str(result, this.Base);
+		return result;
+	},
+	RandomInt: function(bits)
+	{
+		var result = randBigInt(bits);
+		return bigInt2str(result, this.Base);
+	}
 }
 
 var EnanoMath = EnanoMathLayers.Leemon;
@@ -2072,7 +2072,7 @@
 
 function dh_gen_private()
 {
-  return EnanoMath.RandomInt(256);
+	return EnanoMath.RandomInt(256);
 }
 
 /**
@@ -2083,7 +2083,7 @@
 
 function dh_gen_public(b)
 {
-  return EnanoMath.PowMod(dh_g, b, dh_prime);
+	return EnanoMath.PowMod(dh_g, b, dh_prime);
 }
 
 /**
@@ -2095,7 +2095,7 @@
 
 function dh_gen_shared_secret(b, A)
 {
-  return EnanoMath.PowMod(A, b, dh_prime);
+	return EnanoMath.PowMod(A, b, dh_prime);
 }
 
 /* A JavaScript implementation of the Secure Hash Algorithm, SHA-256
@@ -2111,13 +2111,13 @@
 are permitted provided that the following conditions are met:
 
  * Redistributions of source code must retain the above copyright notice, this
-   list of conditions and the following disclaimer.
+ 	list of conditions and the following disclaimer.
  * Redistributions in binary form must reproduce the above copyright notice,
-   this list of conditions and the following disclaimer in the documentation
-   and/or other materials provided with the distribution.
+ 	this list of conditions and the following disclaimer in the documentation
+ 	and/or other materials provided with the distribution.
  * Neither the name of the <ORGANIZATION> nor the names of its contributors may
-   be used to endorse or promote products derived from this software without
-   specific prior written permission.
+ 	be used to endorse or promote products derived from this software without
+ 	specific prior written permission.
 
 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
 ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
@@ -2132,9 +2132,9 @@
 */
 var chrsz = 8;  /* bits per input character. 8 - ASCII; 16 - Unicode  */
 function safe_add (x, y) {
-  var lsw = (x & 0xFFFF) + (y & 0xFFFF);
-  var msw = (x >> 16) + (y >> 16) + (lsw >> 16);
-  return (msw << 16) | (lsw & 0xFFFF);
+	var lsw = (x & 0xFFFF) + (y & 0xFFFF);
+	var msw = (x >> 16) + (y >> 16) + (lsw >> 16);
+	return (msw << 16) | (lsw & 0xFFFF);
 }
 function S (X, n) {return ( X >>> n ) | (X << (32 - n));}
 function R (X, n) {return ( X >>> n );}
@@ -2145,42 +2145,42 @@
 function Gamma0256(x) {return (S(x, 7) ^ S(x, 18) ^ R(x, 3));}
 function Gamma1256(x) {return (S(x, 17) ^ S(x, 19) ^ R(x, 10));}
 function core_sha256 (m, l) {
-    var K = new Array(0x428A2F98,0x71374491,0xB5C0FBCF,0xE9B5DBA5,0x3956C25B,0x59F111F1,0x923F82A4,0xAB1C5ED5,0xD807AA98,0x12835B01,0x243185BE,0x550C7DC3,0x72BE5D74,0x80DEB1FE,0x9BDC06A7,0xC19BF174,0xE49B69C1,0xEFBE4786,0xFC19DC6,0x240CA1CC,0x2DE92C6F,0x4A7484AA,0x5CB0A9DC,0x76F988DA,0x983E5152,0xA831C66D,0xB00327C8,0xBF597FC7,0xC6E00BF3,0xD5A79147,0x6CA6351,0x14292967,0x27B70A85,0x2E1B2138,0x4D2C6DFC,0x53380D13,0x650A7354,0x766A0ABB,0x81C2C92E,0x92722C85,0xA2BFE8A1,0xA81A664B,0xC24B8B70,0xC76C51A3,0xD192E819,0xD6990624,0xF40E3585,0x106AA070,0x19A4C116,0x1E376C08,0x2748774C,0x34B0BCB5,0x391C0CB3,0x4ED8AA4A,0x5B9CCA4F,0x682E6FF3,0x748F82EE,0x78A5636F,0x84C87814,0x8CC70208,0x90BEFFFA,0xA4506CEB,0xBEF9A3F7,0xC67178F2);
-    var HASH = new Array(0x6A09E667, 0xBB67AE85, 0x3C6EF372, 0xA54FF53A, 0x510E527F, 0x9B05688C, 0x1F83D9AB, 0x5BE0CD19);
-    var W = new Array(64);
-    var a, b, c, d, e, f, g, h, i, j;
-    var T1, T2;
-    /* append padding */
-    m[l >> 5] |= 0x80 << (24 - l % 32);
-    m[((l + 64 >> 9) << 4) + 15] = l;
-    for ( var i = 0; i<m.length; i+=16 ) {
-        a = HASH[0]; b = HASH[1]; c = HASH[2]; d = HASH[3]; e = HASH[4]; f = HASH[5]; g = HASH[6]; h = HASH[7];
-        for ( var j = 0; j<64; j++) {
-            if (j < 16) W[j] = m[j + i];
-            else W[j] = safe_add(safe_add(safe_add(Gamma1256(W[j - 2]), W[j - 7]), Gamma0256(W[j - 15])), W[j - 16]);
-            T1 = safe_add(safe_add(safe_add(safe_add(h, Sigma1256(e)), Ch(e, f, g)), K[j]), W[j]);
-            T2 = safe_add(Sigma0256(a), Maj(a, b, c));
-            h = g; g = f; f = e; e = safe_add(d, T1); d = c; c = b; b = a; a = safe_add(T1, T2);
-        }
-        HASH[0] = safe_add(a, HASH[0]); HASH[1] = safe_add(b, HASH[1]); HASH[2] = safe_add(c, HASH[2]); HASH[3] = safe_add(d, HASH[3]); HASH[4] = safe_add(e, HASH[4]); HASH[5] = safe_add(f, HASH[5]); HASH[6] = safe_add(g, HASH[6]); HASH[7] = safe_add(h, HASH[7]);
-    }
-    return HASH;
+		var K = new Array(0x428A2F98,0x71374491,0xB5C0FBCF,0xE9B5DBA5,0x3956C25B,0x59F111F1,0x923F82A4,0xAB1C5ED5,0xD807AA98,0x12835B01,0x243185BE,0x550C7DC3,0x72BE5D74,0x80DEB1FE,0x9BDC06A7,0xC19BF174,0xE49B69C1,0xEFBE4786,0xFC19DC6,0x240CA1CC,0x2DE92C6F,0x4A7484AA,0x5CB0A9DC,0x76F988DA,0x983E5152,0xA831C66D,0xB00327C8,0xBF597FC7,0xC6E00BF3,0xD5A79147,0x6CA6351,0x14292967,0x27B70A85,0x2E1B2138,0x4D2C6DFC,0x53380D13,0x650A7354,0x766A0ABB,0x81C2C92E,0x92722C85,0xA2BFE8A1,0xA81A664B,0xC24B8B70,0xC76C51A3,0xD192E819,0xD6990624,0xF40E3585,0x106AA070,0x19A4C116,0x1E376C08,0x2748774C,0x34B0BCB5,0x391C0CB3,0x4ED8AA4A,0x5B9CCA4F,0x682E6FF3,0x748F82EE,0x78A5636F,0x84C87814,0x8CC70208,0x90BEFFFA,0xA4506CEB,0xBEF9A3F7,0xC67178F2);
+		var HASH = new Array(0x6A09E667, 0xBB67AE85, 0x3C6EF372, 0xA54FF53A, 0x510E527F, 0x9B05688C, 0x1F83D9AB, 0x5BE0CD19);
+		var W = new Array(64);
+		var a, b, c, d, e, f, g, h, i, j;
+		var T1, T2;
+		/* append padding */
+		m[l >> 5] |= 0x80 << (24 - l % 32);
+		m[((l + 64 >> 9) << 4) + 15] = l;
+		for ( var i = 0; i<m.length; i+=16 ) {
+				a = HASH[0]; b = HASH[1]; c = HASH[2]; d = HASH[3]; e = HASH[4]; f = HASH[5]; g = HASH[6]; h = HASH[7];
+				for ( var j = 0; j<64; j++) {
+						if (j < 16) W[j] = m[j + i];
+						else W[j] = safe_add(safe_add(safe_add(Gamma1256(W[j - 2]), W[j - 7]), Gamma0256(W[j - 15])), W[j - 16]);
+						T1 = safe_add(safe_add(safe_add(safe_add(h, Sigma1256(e)), Ch(e, f, g)), K[j]), W[j]);
+						T2 = safe_add(Sigma0256(a), Maj(a, b, c));
+						h = g; g = f; f = e; e = safe_add(d, T1); d = c; c = b; b = a; a = safe_add(T1, T2);
+				}
+				HASH[0] = safe_add(a, HASH[0]); HASH[1] = safe_add(b, HASH[1]); HASH[2] = safe_add(c, HASH[2]); HASH[3] = safe_add(d, HASH[3]); HASH[4] = safe_add(e, HASH[4]); HASH[5] = safe_add(f, HASH[5]); HASH[6] = safe_add(g, HASH[6]); HASH[7] = safe_add(h, HASH[7]);
+		}
+		return HASH;
 }
 function str2binb (str) {
-  var bin = Array();
-  var mask = (1 << chrsz) - 1;
-  for(var i = 0; i < str.length * chrsz; i += chrsz)
-    bin[i>>5] |= (str.charCodeAt(i / chrsz) & mask) << (24 - i%32);
-  return bin;
+	var bin = Array();
+	var mask = (1 << chrsz) - 1;
+	for(var i = 0; i < str.length * chrsz; i += chrsz)
+		bin[i>>5] |= (str.charCodeAt(i / chrsz) & mask) << (24 - i%32);
+	return bin;
 }
 function binb2hex (binarray) {
-  var hexcase = 0; /* hex output format. 0 - lowercase; 1 - uppercase */
-  var hex_tab = hexcase ? "0123456789ABCDEF" : "0123456789abcdef";
-  var str = "";
-  for (var i = 0; i < binarray.length * 4; i++) {
-    str += hex_tab.charAt((binarray[i>>2] >> ((3 - i%4)*8+4)) & 0xF) + hex_tab.charAt((binarray[i>>2] >> ((3 - i%4)*8  )) & 0xF);
-  }
-  return str;
+	var hexcase = 0; /* hex output format. 0 - lowercase; 1 - uppercase */
+	var hex_tab = hexcase ? "0123456789ABCDEF" : "0123456789abcdef";
+	var str = "";
+	for (var i = 0; i < binarray.length * 4; i++) {
+		str += hex_tab.charAt((binarray[i>>2] >> ((3 - i%4)*8+4)) & 0xF) + hex_tab.charAt((binarray[i>>2] >> ((3 - i%4)*8  )) & 0xF);
+	}
+	return str;
 }
 function hex_sha256(s){return binb2hex(core_sha256(str2binb(s),s.length * chrsz));}
 
@@ -2196,13 +2196,13 @@
 function str_hmac_md5(key, data) { return binl2str(core_hmac_md5(key, data)); }
 function md5_vm_test() { return hex_md5("abc") == "900150983cd24fb0d6963f7d28e17f72"; }
 function core_md5(x, len) { x[len >> 5] |= 0x80 << ((len) % 32); x[(((len + 64) >>> 9) << 4) + 14] = len; var a =  1732584193; var b = -271733879; var c = -1732584194; var d =  271733878; for(var i = 0; i < x.length; i += 16) { var olda = a; var oldb = b; var oldc = c; var oldd = d; a = md5_ff(a, b, c, d, x[i+ 0], 7 , -680876936);d = md5_ff(d, a, b, c, x[i+ 1], 12, -389564586);c = md5_ff(c, d, a, b, x[i+ 2], 17,  606105819);b = md5_ff(b, c, d, a, x[i+ 3], 22, -1044525330);
-         a = md5_ff(a, b, c, d, x[i+ 4], 7 , -176418897);d = md5_ff(d, a, b, c, x[i+ 5], 12,  1200080426);c = md5_ff(c, d, a, b, x[i+ 6], 17, -1473231341);b = md5_ff(b, c, d, a, x[i+ 7], 22, -45705983);a = md5_ff(a, b, c, d, x[i+ 8], 7 ,  1770035416);d = md5_ff(d, a, b, c, x[i+ 9], 12, -1958414417);c = md5_ff(c, d, a, b, x[i+10], 17, -42063);b = md5_ff(b, c, d, a, x[i+11], 22, -1990404162);a = md5_ff(a, b, c, d, x[i+12], 7 ,  1804603682);d = md5_ff(d, a, b, c, x[i+13], 12, -40341101);
-         c = md5_ff(c, d, a, b, x[i+14], 17, -1502002290);b = md5_ff(b, c, d, a, x[i+15], 22,  1236535329);a = md5_gg(a, b, c, d, x[i+ 1], 5 , -165796510);d = md5_gg(d, a, b, c, x[i+ 6], 9 , -1069501632);c = md5_gg(c, d, a, b, x[i+11], 14,  643717713);b = md5_gg(b, c, d, a, x[i+ 0], 20, -373897302);a = md5_gg(a, b, c, d, x[i+ 5], 5 , -701558691);d = md5_gg(d, a, b, c, x[i+10], 9 ,  38016083);c = md5_gg(c, d, a, b, x[i+15], 14, -660478335);b = md5_gg(b, c, d, a, x[i+ 4], 20, -405537848);
-         a = md5_gg(a, b, c, d, x[i+ 9], 5 ,  568446438);d = md5_gg(d, a, b, c, x[i+14], 9 , -1019803690);c = md5_gg(c, d, a, b, x[i+ 3], 14, -187363961);b = md5_gg(b, c, d, a, x[i+ 8], 20,  1163531501);a = md5_gg(a, b, c, d, x[i+13], 5 , -1444681467);d = md5_gg(d, a, b, c, x[i+ 2], 9 , -51403784);c = md5_gg(c, d, a, b, x[i+ 7], 14,  1735328473);b = md5_gg(b, c, d, a, x[i+12], 20, -1926607734);a = md5_hh(a, b, c, d, x[i+ 5], 4 , -378558);d = md5_hh(d, a, b, c, x[i+ 8], 11, -2022574463);
-         c = md5_hh(c, d, a, b, x[i+11], 16,  1839030562);b = md5_hh(b, c, d, a, x[i+14], 23, -35309556);a = md5_hh(a, b, c, d, x[i+ 1], 4 , -1530992060);d = md5_hh(d, a, b, c, x[i+ 4], 11,  1272893353);c = md5_hh(c, d, a, b, x[i+ 7], 16, -155497632);b = md5_hh(b, c, d, a, x[i+10], 23, -1094730640);a = md5_hh(a, b, c, d, x[i+13], 4 ,  681279174);d = md5_hh(d, a, b, c, x[i+ 0], 11, -358537222);c = md5_hh(c, d, a, b, x[i+ 3], 16, -722521979);b = md5_hh(b, c, d, a, x[i+ 6], 23,  76029189);
-         a = md5_hh(a, b, c, d, x[i+ 9], 4 , -640364487);d = md5_hh(d, a, b, c, x[i+12], 11, -421815835);c = md5_hh(c, d, a, b, x[i+15], 16,  530742520);b = md5_hh(b, c, d, a, x[i+ 2], 23, -995338651);a = md5_ii(a, b, c, d, x[i+ 0], 6 , -198630844);d = md5_ii(d, a, b, c, x[i+ 7], 10,  1126891415);c = md5_ii(c, d, a, b, x[i+14], 15, -1416354905);b = md5_ii(b, c, d, a, x[i+ 5], 21, -57434055);a = md5_ii(a, b, c, d, x[i+12], 6 ,  1700485571);d = md5_ii(d, a, b, c, x[i+ 3], 10, -1894986606);
-         c = md5_ii(c, d, a, b, x[i+10], 15, -1051523);b = md5_ii(b, c, d, a, x[i+ 1], 21, -2054922799);a = md5_ii(a, b, c, d, x[i+ 8], 6 ,  1873313359);d = md5_ii(d, a, b, c, x[i+15], 10, -30611744);c = md5_ii(c, d, a, b, x[i+ 6], 15, -1560198380);b = md5_ii(b, c, d, a, x[i+13], 21,  1309151649);a = md5_ii(a, b, c, d, x[i+ 4], 6 , -145523070);d = md5_ii(d, a, b, c, x[i+11], 10, -1120210379);c = md5_ii(c, d, a, b, x[i+ 2], 15,  718787259);b = md5_ii(b, c, d, a, x[i+ 9], 21, -343485551);
-         a = safe_add(a, olda); b = safe_add(b, oldb); c = safe_add(c, oldc); d = safe_add(d, oldd); } return Array(a, b, c, d); }
+ 				a = md5_ff(a, b, c, d, x[i+ 4], 7 , -176418897);d = md5_ff(d, a, b, c, x[i+ 5], 12,  1200080426);c = md5_ff(c, d, a, b, x[i+ 6], 17, -1473231341);b = md5_ff(b, c, d, a, x[i+ 7], 22, -45705983);a = md5_ff(a, b, c, d, x[i+ 8], 7 ,  1770035416);d = md5_ff(d, a, b, c, x[i+ 9], 12, -1958414417);c = md5_ff(c, d, a, b, x[i+10], 17, -42063);b = md5_ff(b, c, d, a, x[i+11], 22, -1990404162);a = md5_ff(a, b, c, d, x[i+12], 7 ,  1804603682);d = md5_ff(d, a, b, c, x[i+13], 12, -40341101);
+ 				c = md5_ff(c, d, a, b, x[i+14], 17, -1502002290);b = md5_ff(b, c, d, a, x[i+15], 22,  1236535329);a = md5_gg(a, b, c, d, x[i+ 1], 5 , -165796510);d = md5_gg(d, a, b, c, x[i+ 6], 9 , -1069501632);c = md5_gg(c, d, a, b, x[i+11], 14,  643717713);b = md5_gg(b, c, d, a, x[i+ 0], 20, -373897302);a = md5_gg(a, b, c, d, x[i+ 5], 5 , -701558691);d = md5_gg(d, a, b, c, x[i+10], 9 ,  38016083);c = md5_gg(c, d, a, b, x[i+15], 14, -660478335);b = md5_gg(b, c, d, a, x[i+ 4], 20, -405537848);
+ 				a = md5_gg(a, b, c, d, x[i+ 9], 5 ,  568446438);d = md5_gg(d, a, b, c, x[i+14], 9 , -1019803690);c = md5_gg(c, d, a, b, x[i+ 3], 14, -187363961);b = md5_gg(b, c, d, a, x[i+ 8], 20,  1163531501);a = md5_gg(a, b, c, d, x[i+13], 5 , -1444681467);d = md5_gg(d, a, b, c, x[i+ 2], 9 , -51403784);c = md5_gg(c, d, a, b, x[i+ 7], 14,  1735328473);b = md5_gg(b, c, d, a, x[i+12], 20, -1926607734);a = md5_hh(a, b, c, d, x[i+ 5], 4 , -378558);d = md5_hh(d, a, b, c, x[i+ 8], 11, -2022574463);
+ 				c = md5_hh(c, d, a, b, x[i+11], 16,  1839030562);b = md5_hh(b, c, d, a, x[i+14], 23, -35309556);a = md5_hh(a, b, c, d, x[i+ 1], 4 , -1530992060);d = md5_hh(d, a, b, c, x[i+ 4], 11,  1272893353);c = md5_hh(c, d, a, b, x[i+ 7], 16, -155497632);b = md5_hh(b, c, d, a, x[i+10], 23, -1094730640);a = md5_hh(a, b, c, d, x[i+13], 4 ,  681279174);d = md5_hh(d, a, b, c, x[i+ 0], 11, -358537222);c = md5_hh(c, d, a, b, x[i+ 3], 16, -722521979);b = md5_hh(b, c, d, a, x[i+ 6], 23,  76029189);
+ 				a = md5_hh(a, b, c, d, x[i+ 9], 4 , -640364487);d = md5_hh(d, a, b, c, x[i+12], 11, -421815835);c = md5_hh(c, d, a, b, x[i+15], 16,  530742520);b = md5_hh(b, c, d, a, x[i+ 2], 23, -995338651);a = md5_ii(a, b, c, d, x[i+ 0], 6 , -198630844);d = md5_ii(d, a, b, c, x[i+ 7], 10,  1126891415);c = md5_ii(c, d, a, b, x[i+14], 15, -1416354905);b = md5_ii(b, c, d, a, x[i+ 5], 21, -57434055);a = md5_ii(a, b, c, d, x[i+12], 6 ,  1700485571);d = md5_ii(d, a, b, c, x[i+ 3], 10, -1894986606);
+ 				c = md5_ii(c, d, a, b, x[i+10], 15, -1051523);b = md5_ii(b, c, d, a, x[i+ 1], 21, -2054922799);a = md5_ii(a, b, c, d, x[i+ 8], 6 ,  1873313359);d = md5_ii(d, a, b, c, x[i+15], 10, -30611744);c = md5_ii(c, d, a, b, x[i+ 6], 15, -1560198380);b = md5_ii(b, c, d, a, x[i+13], 21,  1309151649);a = md5_ii(a, b, c, d, x[i+ 4], 6 , -145523070);d = md5_ii(d, a, b, c, x[i+11], 10, -1120210379);c = md5_ii(c, d, a, b, x[i+ 2], 15,  718787259);b = md5_ii(b, c, d, a, x[i+ 9], 21, -343485551);
+ 				a = safe_add(a, olda); b = safe_add(b, oldb); c = safe_add(c, oldc); d = safe_add(d, oldd); } return Array(a, b, c, d); }
 function md5_cmn(q, a, b, x, s, t) { return safe_add(bit_rol(safe_add(safe_add(a, q), safe_add(x, t)), s),b); }
 function md5_ff(a, b, c, d, x, s, t) { return md5_cmn((b & c) | ((~b) & d), a, b, x, s, t); }
 function md5_gg(a, b, c, d, x, s, t) { return md5_cmn((b & d) | (c & (~d)), a, b, x, s, t); }