Rebranded as 1.0.1.1; fixed category page drawing bug; updated link to GPL in the about page to the GPLv2
<?php
/**
* Phijndael - an implementation of the AES encryption standard in PHP
* Originally written by Fritz Schneider <fritz AT cd DOT ucsd DOT edu>
* Ported to PHP by Dan Fuhry <dan AT enano DOT homelinux DOT org>
* @package phijndael
* @author Fritz Schneider
* @author Dan Fuhry
* @license BSD-style license
*/
error_reporting(E_ALL);
define ('ENC_HEX', 201);
define ('ENC_BASE64', 202);
define ('ENC_BINARY', 203);
class AESCrypt {
var $debug = false;
var $mcrypt = false;
// Rijndael parameters -- Valid values are 128, 192, or 256
var $keySizeInBits = 128;
var $blockSizeInBits = 128;
/////// You shouldn't have to modify anything below this line except for
/////// the function getRandomBytes().
//
// Note: in the following code the two dimensional arrays are indexed as
// you would probably expect, as array[row][column]. The state arrays
// are 2d arrays of the form state[4][Nb].
// The number of rounds for the cipher, indexed by [Nk][Nb]
var $roundsArray = Array(0,0,0,0,Array(0,0,0,0,10,0, 12,0, 14),0,
Array(0,0,0,0,12,0, 12,0, 14),0,
Array(0,0,0,0,14,0, 14,0, 14) );
// The number of bytes to shift by in shiftRow, indexed by [Nb][row]
var $shiftOffsets = Array(0,0,0,0,Array(0,1, 2, 3),0,Array(0,1, 2, 3),0,Array(0,1, 3, 4) );
// The round constants used in subkey expansion
var $Rcon = Array(
0x01, 0x02, 0x04, 0x08, 0x10, 0x20,
0x40, 0x80, 0x1b, 0x36, 0x6c, 0xd8,
0xab, 0x4d, 0x9a, 0x2f, 0x5e, 0xbc,
0x63, 0xc6, 0x97, 0x35, 0x6a, 0xd4,
0xb3, 0x7d, 0xfa, 0xef, 0xc5, 0x91 );
// Precomputed lookup table for the SBox
var $SBox = Array(
99, 124, 119, 123, 242, 107, 111, 197, 48, 1, 103, 43, 254, 215, 171,
118, 202, 130, 201, 125, 250, 89, 71, 240, 173, 212, 162, 175, 156, 164,
114, 192, 183, 253, 147, 38, 54, 63, 247, 204, 52, 165, 229, 241, 113,
216, 49, 21, 4, 199, 35, 195, 24, 150, 5, 154, 7, 18, 128, 226,
235, 39, 178, 117, 9, 131, 44, 26, 27, 110, 90, 160, 82, 59, 214,
179, 41, 227, 47, 132, 83, 209, 0, 237, 32, 252, 177, 91, 106, 203,
190, 57, 74, 76, 88, 207, 208, 239, 170, 251, 67, 77, 51, 133, 69,
249, 2, 127, 80, 60, 159, 168, 81, 163, 64, 143, 146, 157, 56, 245,
188, 182, 218, 33, 16, 255, 243, 210, 205, 12, 19, 236, 95, 151, 68,
23, 196, 167, 126, 61, 100, 93, 25, 115, 96, 129, 79, 220, 34, 42,
144, 136, 70, 238, 184, 20, 222, 94, 11, 219, 224, 50, 58, 10, 73,
6, 36, 92, 194, 211, 172, 98, 145, 149, 228, 121, 231, 200, 55, 109,
141, 213, 78, 169, 108, 86, 244, 234, 101, 122, 174, 8, 186, 120, 37,
46, 28, 166, 180, 198, 232, 221, 116, 31, 75, 189, 139, 138, 112, 62,
181, 102, 72, 3, 246, 14, 97, 53, 87, 185, 134, 193, 29, 158, 225,
248, 152, 17, 105, 217, 142, 148, 155, 30, 135, 233, 206, 85, 40, 223,
140, 161, 137, 13, 191, 230, 66, 104, 65, 153, 45, 15, 176, 84, 187,
22 );
// Precomputed lookup table for the inverse SBox
var $SBoxInverse = Array(
82, 9, 106, 213, 48, 54, 165, 56, 191, 64, 163, 158, 129, 243, 215,
251, 124, 227, 57, 130, 155, 47, 255, 135, 52, 142, 67, 68, 196, 222,
233, 203, 84, 123, 148, 50, 166, 194, 35, 61, 238, 76, 149, 11, 66,
250, 195, 78, 8, 46, 161, 102, 40, 217, 36, 178, 118, 91, 162, 73,
109, 139, 209, 37, 114, 248, 246, 100, 134, 104, 152, 22, 212, 164, 92,
204, 93, 101, 182, 146, 108, 112, 72, 80, 253, 237, 185, 218, 94, 21,
70, 87, 167, 141, 157, 132, 144, 216, 171, 0, 140, 188, 211, 10, 247,
228, 88, 5, 184, 179, 69, 6, 208, 44, 30, 143, 202, 63, 15, 2,
193, 175, 189, 3, 1, 19, 138, 107, 58, 145, 17, 65, 79, 103, 220,
234, 151, 242, 207, 206, 240, 180, 230, 115, 150, 172, 116, 34, 231, 173,
53, 133, 226, 249, 55, 232, 28, 117, 223, 110, 71, 241, 26, 113, 29,
41, 197, 137, 111, 183, 98, 14, 170, 24, 190, 27, 252, 86, 62, 75,
198, 210, 121, 32, 154, 219, 192, 254, 120, 205, 90, 244, 31, 221, 168,
51, 136, 7, 199, 49, 177, 18, 16, 89, 39, 128, 236, 95, 96, 81,
127, 169, 25, 181, 74, 13, 45, 229, 122, 159, 147, 201, 156, 239, 160,
224, 59, 77, 174, 42, 245, 176, 200, 235, 187, 60, 131, 83, 153, 97,
23, 43, 4, 126, 186, 119, 214, 38, 225, 105, 20, 99, 85, 33, 12,
125 );
function AESCrypt($ks = 128, $bs = 128, $debug = false)
{
$this->__construct($ks, $bs, $debug);
}
function __construct($ks = 128, $bs = 128, $debug = false)
{
$this->keySizeInBits = $ks;
$this->blockSizeInBits = $bs;
// Use the Mcrypt library? This speeds things up dramatically.
if(defined('MCRYPT_RIJNDAEL_' . $ks) && defined('MCRYPT_ACCEL'))
{
eval('$mcb = MCRYPT_RIJNDAEL_' . $ks.';');
$bks = mcrypt_module_get_algo_block_size($mcb);
$bks = $bks * 8;
if ( $bks != $bs )
{
$mcb = false;
echo (string)$bks;
}
}
else
{
$mcb = false;
}
$this->mcrypt = $mcb;
// Cipher parameters ... do not change these
$this->Nk = $this->keySizeInBits / 32;
$this->Nb = $this->blockSizeInBits / 32;
$this->Nr = $this->roundsArray[$this->Nk][$this->Nb];
$this->debug = $debug;
}
// Error handler
function trigger_error($text, $level = E_USER_NOTICE)
{
$bt = debug_backtrace();
$lastfunc =& $bt[1];
switch($level)
{
case E_USER_NOTICE:
default:
$desc = 'Notice';
break;
case E_USER_WARNING:
$desc = 'Warning';
break;
case E_USER_ERROR:
$desc = 'Fatal';
break;
}
ob_start();
if($this->debug || $level == E_USER_ERROR) echo "AES encryption: <b>{$desc}:</b> $text in {$lastfunc['file']} on line {$lastfunc['line']} in function {$lastfunc['function']}<br />";
if($this->debug)
{
//echo '<pre>'.enano_debug_print_backtrace(true).'</pre>';
}
ob_end_flush();
if($level == E_USER_ERROR)
{
echo '<p><b>This can sometimes happen if you are upgrading Enano to a new version and did not log out first.</b> <a href="'.$_SERVER['PHP_SELF'].'?do=diag&sub=cookie_destroy">Click here</a> to force cookies to clear and try again. You will be logged out.</p>';
exit;
}
}
function array_slice_js_compat($array, $start, $finish = 0)
{
$len = $finish - $start;
if($len < 0) $len = 0 - $len;
//if($this->debug) echo (string)$len . ' ';
//if(count($array) < $start + $len)
// $this->trigger_error('Index out of range', E_USER_WARNING);
return array_slice($array, $start, $len);
}
function concat($s1, $s2)
{
if(is_array($s1) && is_array($s2))
return array_merge($s1, $s2);
elseif( ( is_array($s1) && !is_array($s2) ) || ( !is_array($s1) && is_array($s2) ) )
{
$this->trigger_error('incompatible types - you can\'t combine a non-array with an array', E_USER_WARNING);
return false;
}
else
return $s1 . $s2;
}
// This method circularly shifts the array left by the number of elements
// given in its parameter. It returns the resulting array and is used for
// the ShiftRow step. Note that shift() and push() could be used for a more
// elegant solution, but they require IE5.5+, so I chose to do it manually.
function cyclicShiftLeft($theArray, $positions) {
if(!is_int($positions))
{
$this->trigger_error('$positions is not an integer! Backtrace:<br /><pre>'.print_r(debug_backtrace(), true).'</pre>', E_USER_WARNING);
return false;
}
$second = array_slice($theArray, 0, $positions);
$first = array_slice($theArray, $positions);
$theArray = array_merge($first, $second);
return $theArray;
}
// Multiplies the element "poly" of GF(2^8) by x. See the Rijndael spec.
function xtime($poly) {
$poly <<= 1;
return (($poly & 0x100) ? ($poly ^ 0x11B) : ($poly));
}
// Multiplies the two elements of GF(2^8) together and returns the result.
// See the Rijndael spec, but should be straightforward: for each power of
// the indeterminant that has a 1 coefficient in x, add y times that power
// to the result. x and y should be bytes representing elements of GF(2^8)
function mult_GF256($x, $y) {
$result = 0;
for ($bit = 1; $bit < 256; $bit *= 2, $y = $this->xtime($y)) {
if ($x & $bit)
$result ^= $y;
}
return $result;
}
// Performs the substitution step of the cipher. State is the 2d array of
// state information (see spec) and direction is string indicating whether
// we are performing the forward substitution ("encrypt") or inverse
// substitution (anything else)
function byteSub(&$state, $direction) {
//global $this->SBox, $this->SBoxInverse, $this->Nb;
if ($direction == "encrypt") // Point S to the SBox we're using
$S =& $this->SBox;
else
$S =& $this->SBoxInverse;
for ($i = 0; $i < 4; $i++) // Substitute for every byte in state
for ($j = 0; $j < $this->Nb; $j++)
$state[$i][$j] = $S[$state[$i][$j]];
}
// Performs the row shifting step of the cipher.
function shiftRow(&$state, $direction) {
//global $this->Nb, $this->shiftOffsets;
for ($i=1; $i<4; $i++) // Row 0 never shifts
if ($direction == "encrypt")
$state[$i] = $this->cyclicShiftLeft($state[$i], $this->shiftOffsets[$this->Nb][$i]);
else
$state[$i] = $this->cyclicShiftLeft($state[$i], $this->Nb - $this->shiftOffsets[$this->Nb][$i]);
}
// Performs the column mixing step of the cipher. Most of these steps can
// be combined into table lookups on 32bit values (at least for encryption)
// to greatly increase the speed.
function mixColumn(&$state, $direction) {
//global $this->Nb;
$b = Array(); // Result of matrix multiplications
for ($j = 0; $j < $this->Nb; $j++) { // Go through each column...
for ($i = 0; $i < 4; $i++) { // and for each row in the column...
if ($direction == "encrypt")
$b[$i] = $this->mult_GF256($state[$i][$j], 2) ^ // perform mixing
$this->mult_GF256($state[($i+1)%4][$j], 3) ^
$state[($i+2)%4][$j] ^
$state[($i+3)%4][$j];
else
$b[$i] = $this->mult_GF256($state[$i][$j], 0xE) ^
$this->mult_GF256($state[($i+1)%4][$j], 0xB) ^
$this->mult_GF256($state[($i+2)%4][$j], 0xD) ^
$this->mult_GF256($state[($i+3)%4][$j], 9);
}
for ($i = 0; $i < 4; $i++) // Place result back into column
$state[$i][$j] = $b[$i];
}
}
// Adds the current round key to the state information. Straightforward.
function addRoundKey(&$state, $roundKey) {
//global $this->Nb;
for ($j = 0; $j < $this->Nb; $j++) { // Step through columns...
$state[0][$j] ^= ( $roundKey[$j] & 0xFF); // and XOR
$state[1][$j] ^= (($roundKey[$j]>>8) & 0xFF);
$state[2][$j] ^= (($roundKey[$j]>>16) & 0xFF);
$state[3][$j] ^= (($roundKey[$j]>>24) & 0xFF);
}
}
// This function creates the expanded key from the input (128/192/256-bit)
// key. The parameter key is an array of bytes holding the value of the key.
// The returned value is an array whose elements are the 32-bit words that
// make up the expanded key.
function keyExpansion($key) {
//global $this->keySizeInBits, $this->blockSizeInBits, $this->roundsArray, $this->Nk, $this->Nb, $this->Nr, $this->Nk, $this->SBox, $this->Rcon;
$expandedKey = Array();
// in case the key size or parameters were changed...
$this->Nk = $this->keySizeInBits / 32;
$this->Nb = $this->blockSizeInBits / 32;
$this->Nr = $this->roundsArray[$this->Nk][$this->Nb];
for ($j=0; $j < $this->Nk; $j++) // Fill in input key first
$expandedKey[$j] =
($key[4*$j]) | ($key[4*$j+1]<<8) | ($key[4*$j+2]<<16) | ($key[4*$j+3]<<24);
// Now walk down the rest of the array filling in expanded key bytes as
// per Rijndael's spec
for ($j = $this->Nk; $j < $this->Nb * ($this->Nr + 1); $j++) { // For each word of expanded key
$temp = $expandedKey[$j - 1];
if ($j % $this->Nk == 0)
$temp = ( ($this->SBox[($temp>>8) & 0xFF]) |
($this->SBox[($temp>>16) & 0xFF]<<8) |
($this->SBox[($temp>>24) & 0xFF]<<16) |
($this->SBox[$temp & 0xFF]<<24) ) ^ $this->Rcon[floor($j / $this->Nk) - 1];
elseif ($this->Nk > 6 && $j % $this->Nk == 4)
$temp = ($this->SBox[($temp>>24) & 0xFF]<<24) |
($this->SBox[($temp>>16) & 0xFF]<<16) |
($this->SBox[($temp>>8) & 0xFF]<<8) |
($this->SBox[ $temp & 0xFF]);
$expandedKey[$j] = $expandedKey[$j-$this->Nk] ^ $temp;
}
return $expandedKey;
}
// Rijndael's round functions...
function RijndaelRound(&$state, $roundKey) {
$this->byteSub($state, "encrypt");
$this->shiftRow($state, "encrypt");
$this->mixColumn($state, "encrypt");
$this->addRoundKey($state, $roundKey);
}
function InverseRijndaelRound(&$state, $roundKey) {
$this->addRoundKey($state, $roundKey);
$this->mixColumn($state, "decrypt");
$this->shiftRow($state, "decrypt");
$this->byteSub($state, "decrypt");
}
function FinalRijndaelRound(&$state, $roundKey) {
$this->byteSub($state, "encrypt");
$this->shiftRow($state, "encrypt");
$this->addRoundKey($state, $roundKey);
}
function InverseFinalRijndaelRound(&$state, $roundKey){
$this->addRoundKey($state, $roundKey);
$this->shiftRow($state, "decrypt");
$this->byteSub($state, "decrypt");
}
// encrypt is the basic encryption function. It takes parameters
// block, an array of bytes representing a plaintext block, and expandedKey,
// an array of words representing the expanded key previously returned by
// keyExpansion(). The ciphertext block is returned as an array of bytes.
function cryptBlock($block, $expandedKey) {
//global $this->blockSizeInBits, $this->Nb, $this->Nr;
$t=count($block)*8;
if (!is_array($block) || count($block)*8 != $this->blockSizeInBits)
{
$this->trigger_error('block is bad or block size is wrong<pre>'.print_r($block, true).'</pre><p>Aiming for size '.$this->blockSizeInBits.', got '.$t.'.', E_USER_WARNING);
return false;
}
if (!$expandedKey)
return;
$block = $this->packBytes($block);
$this->addRoundKey($block, $expandedKey);
for ($i=1; $i<$this->Nr; $i++)
$this->RijndaelRound($block, $this->array_slice_js_compat($expandedKey, $this->Nb*$i, $this->Nb*($i+1)));
$this->FinalRijndaelRound($block, $this->array_slice_js_compat($expandedKey, $this->Nb*$this->Nr));
$ret = $this->unpackBytes($block);
return $ret;
}
// decrypt is the basic decryption function. It takes parameters
// block, an array of bytes representing a ciphertext block, and expandedKey,
// an array of words representing the expanded key previously returned by
// keyExpansion(). The decrypted block is returned as an array of bytes.
function unCryptBlock($block, $expandedKey) {
$t = count($block)*8;
if (!is_array($block) || count($block)*8 != $this->blockSizeInBits)
{
$this->trigger_error('$block is not a valid rijndael-block array: '.$this->byteArrayToHex($block).'<pre>'.print_r($block, true).'</pre><p>Block size is '.$t.', should be '.$this->blockSizeInBits.'</p>', E_USER_WARNING);
return false;
}
if (!$expandedKey)
{
$this->trigger_error('$expandedKey is invalid', E_USER_WARNING);
return false;
}
$block = $this->packBytes($block);
$this->InverseFinalRijndaelRound($block, $this->array_slice_js_compat($expandedKey, $this->Nb*$this->Nr));
for ($i = $this->Nr - 1; $i>0; $i--)
{
$this->InverseRijndaelRound($block, $this->array_slice_js_compat($expandedKey, $this->Nb*$i, $this->Nb*($i+1)));
}
$this->addRoundKey($block, $expandedKey);
$ret = $this->unpackBytes($block);
if(!is_array($ret))
{
$this->trigger_error('$ret is not an array', E_USER_WARNING);
}
return $ret;
}
// This method takes a byte array (byteArray) and converts it to a string by
// applying String.fromCharCode() to each value and concatenating the result.
// The resulting string is returned. Note that this function SKIPS zero bytes
// under the assumption that they are padding added in formatPlaintext().
// Obviously, do not invoke this method on raw data that can contain zero
// bytes. It is really only appropriate for printable ASCII/Latin-1
// values. Roll your own function for more robust functionality :)
function byteArrayToString($byteArray) {
$result = "";
for($i=0; $i<count($byteArray); $i++)
if ($byteArray[$i] != 0)
$result .= chr($byteArray[$i]);
return $result;
}
// This function takes an array of bytes (byteArray) and converts them
// to a hexadecimal string. Array element 0 is found at the beginning of
// the resulting string, high nibble first. Consecutive elements follow
// similarly, for example [16, 255] --> "10ff". The function returns a
// string.
/*
function byteArrayToHex($byteArray) {
$result = "";
if (!$byteArray)
return;
for ($i=0; $i<count($byteArray); $i++)
$result .= (($byteArray[$i]<16) ? "0" : "") + toString($byteArray[$i]); // magic number here is 16, not sure how to handle this...
return $result;
}
*/
function byteArrayToHex($arr)
{
$ret = '';
foreach($arr as $a)
{
$nibble = (string)dechex(intval($a));
if(strlen($nibble) == 1) $nibble = '0' . $nibble;
$ret .= $nibble;
}
return $ret;
}
// PHP equivalent of Javascript's toString()
function toString($bool)
{
if(is_bool($bool))
return ($bool) ? 'true' : 'false';
elseif(is_array($bool))
return implode(',', $bool);
else
return (string)$bool;
}
// This function converts a string containing hexadecimal digits to an
// array of bytes. The resulting byte array is filled in the order the
// values occur in the string, for example "10FF" --> [16, 255]. This
// function returns an array.
/*
function hexToByteArray($hexString) {
$byteArray = Array();
if (strlen($hexString) % 2) // must have even length
return;
if (strstr($hexString, "0x") == $hexString || strstr($hexString, "0X") == $hexString)
$hexString = substr($hexString, 2);
for ($i = 0; $i<strlen($hexString); $i++,$i++)
$byteArray[floor($i/2)] = intval(substr($hexString, $i, 2)); // again, that strange magic number: 16
return $byteArray;
}
*/
function hexToByteArray($str)
{
if(substr($str, 0, 2) == '0x' || substr($str, 0, 2) == '0X')
$str = substr($str, 2);
$arr = Array();
$str = $this->enano_str_split($str, 2);
foreach($str as $s)
{
$arr[] = intval(hexdec($s));
}
return $arr;
}
// This function packs an array of bytes into the four row form defined by
// Rijndael. It assumes the length of the array of bytes is divisible by
// four. Bytes are filled in according to the Rijndael spec (starting with
// column 0, row 0 to 3). This function returns a 2d array.
function packBytes($octets) {
$state = Array();
if (!$octets || count($octets) % 4)
return;
$state[0] = Array(); $state[1] = Array();
$state[2] = Array(); $state[3] = Array();
for ($j=0; $j<count($octets); $j = $j+4) {
$state[0][$j/4] = $octets[$j];
$state[1][$j/4] = $octets[$j+1];
$state[2][$j/4] = $octets[$j+2];
$state[3][$j/4] = $octets[$j+3];
}
return $state;
}
// This function unpacks an array of bytes from the four row format preferred
// by Rijndael into a single 1d array of bytes. It assumes the input "packed"
// is a packed array. Bytes are filled in according to the Rijndael spec.
// This function returns a 1d array of bytes.
function unpackBytes($packed) {
$result = Array();
for ($j=0; $j<count($packed[0]); $j++) {
$result[] = $packed[0][$j];
$result[] = $packed[1][$j];
$result[] = $packed[2][$j];
$result[] = $packed[3][$j];
}
return $result;
}
function charCodeAt($str, $i)
{
return ord(substr($str, $i, 1));
}
function fromCharCode($str)
{
return chr($str);
}
// This function takes a prospective plaintext (string or array of bytes)
// and pads it with zero bytes if its length is not a multiple of the block
// size. If plaintext is a string, it is converted to an array of bytes
// in the process. The type checking can be made much nicer using the
// instanceof operator, but this operator is not available until IE5.0 so I
// chose to use the heuristic below.
function formatPlaintext($plaintext) {
//global $this->blockSizeInBits;
$bpb = $this->blockSizeInBits / 8; // bytes per block
// if primitive string or String instance
if (is_string($plaintext)) {
$plaintext = $this->enano_str_split($plaintext);
// Unicode issues here (ignoring high byte)
for ($i=0; $i<sizeof($plaintext); $i++)
$plaintext[$i] = $this->charCodeAt($plaintext[$i], 0) & 0xFF;
}
for ($i = $bpb - (sizeof($plaintext) % $bpb); $i > 0 && $i < $bpb; $i--)
$plaintext[] = 0;
return $plaintext;
}
// Returns an array containing "howMany" random bytes. YOU SHOULD CHANGE THIS
// TO RETURN HIGHER QUALITY RANDOM BYTES IF YOU ARE USING THIS FOR A "REAL"
// APPLICATION. (edit: done, mt_rand() is relatively secure)
function getRandomBytes($howMany) {
$bytes = Array();
for ($i=0; $i<$howMany; $i++)
$bytes[$i] = mt_rand(0, 255);
return $bytes;
}
// rijndaelEncrypt(plaintext, key, mode)
// Encrypts the plaintext using the given key and in the given mode.
// The parameter "plaintext" can either be a string or an array of bytes.
// The parameter "key" must be an array of key bytes. If you have a hex
// string representing the key, invoke hexToByteArray() on it to convert it
// to an array of bytes. The third parameter "mode" is a string indicating
// the encryption mode to use, either "ECB" or "CBC". If the parameter is
// omitted, ECB is assumed.
//
// An array of bytes representing the cihpertext is returned. To convert
// this array to hex, invoke byteArrayToHex() on it. If you are using this
// "for real" it is a good idea to change the function getRandomBytes() to
// something that returns truly random bits.
function rijndaelEncrypt($plaintext, $key, $mode = 'ECB') {
//global $this->blockSizeInBits, $this->keySizeInBits;
$bpb = $this->blockSizeInBits / 8; // bytes per block
// var ct; // ciphertext
if($mode == 'CBC')
{
if (!is_string($plaintext) || !is_array($key))
{
$this->trigger_error('In CBC mode the first and second parameters should be strings', E_USER_WARNING);
return false;
}
} else {
if (!is_array($plaintext) || !is_array($key))
{
$this->trigger_error('In ECB mode the first and second parameters should be byte arrays', E_USER_WARNING);
return false;
}
}
if (sizeof($key)*8 != $this->keySizeInBits)
{
$this->trigger_error('The key needs to be '. ( $this->keySizeInBits / 8 ) .' bytes in length', E_USER_WARNING);
return false;
}
if ($mode == "CBC")
$ct = $this->getRandomBytes($bpb); // get IV
else {
$mode = "ECB";
$ct = Array();
}
// convert plaintext to byte array and pad with zeros if necessary.
$plaintext = $this->formatPlaintext($plaintext);
$expandedKey = $this->keyExpansion($key);
for ($block=0; $block<sizeof($plaintext) / $bpb; $block++) {
$aBlock = $this->array_slice_js_compat($plaintext, $block*$bpb, ($block+1)*$bpb);
if ($mode == "CBC")
{
for ($i=0; $i<$bpb; $i++)
{
$aBlock[$i] ^= $ct[$block*$bpb + $i];
}
}
$cp = $this->cryptBlock($aBlock, $expandedKey);
$ct = $this->concat($ct, $cp);
}
return $ct;
}
// rijndaelDecrypt(ciphertext, key, mode)
// Decrypts the using the given key and mode. The parameter "ciphertext"
// must be an array of bytes. The parameter "key" must be an array of key
// bytes. If you have a hex string representing the ciphertext or key,
// invoke hexToByteArray() on it to convert it to an array of bytes. The
// parameter "mode" is a string, either "CBC" or "ECB".
//
// An array of bytes representing the plaintext is returned. To convert
// this array to a hex string, invoke byteArrayToHex() on it. To convert it
// to a string of characters, you can use byteArrayToString().
function rijndaelDecrypt($ciphertext, $key, $mode = 'ECB') {
//global $this->blockSizeInBits, $this->keySizeInBits;
$bpb = $this->blockSizeInBits / 8; // bytes per block
$pt = Array(); // plaintext array
// $aBlock; // a decrypted block
// $block; // current block number
if (!$ciphertext)
{
$this->trigger_error('$ciphertext should be a byte array', E_USER_WARNING);
return false;
}
if( !is_array($key) )
{
$this->trigger_error('$key should be a byte array', E_USER_WARNING);
return false;
}
if( is_string($ciphertext) )
{
$this->trigger_error('$ciphertext should be a byte array', E_USER_WARNING);
return false;
}
if (sizeof($key)*8 != $this->keySizeInBits)
{
$this->trigger_error('Encryption key is the wrong length', E_USER_WARNING);
return false;
}
if (!$mode)
$mode = "ECB"; // assume ECB if mode omitted
$expandedKey = $this->keyExpansion($key);
// work backwards to accomodate CBC mode
for ($block=(sizeof($ciphertext) / $bpb)-1; $block>0; $block--)
{
if( ( $block*$bpb ) + ( ($block+1)*$bpb ) > count($ciphertext) )
{
//$this->trigger_error('$ciphertext index out of bounds', E_USER_ERROR);
}
$current_block = $this->array_slice_js_compat($ciphertext, $block*$bpb, ($block+1)*$bpb);
if(count($current_block) * 8 != $this->blockSizeInBits)
{
// $c=count($current_block)*8;
// $this->trigger_error('We got a '.$c.'-bit block, instead of '.$this->blockSizeInBits.'', E_USER_ERROR);
}
$aBlock = $this->uncryptBlock($current_block, $expandedKey);
if(!$aBlock)
{
$this->trigger_error('Shared block decryption routine returned false', E_USER_WARNING);
return false;
}
if ($mode == "CBC")
for ($i=0; $i<$bpb; $i++)
$pt[($block-1)*$bpb + $i] = $aBlock[$i] ^ $ciphertext[($block-1)*$bpb + $i];
else
$pt = $this->concat($aBlock, $pt);
}
// do last block if ECB (skips the IV in CBC)
if ($mode == "ECB")
{
$x = $this->uncryptBlock($this->array_slice_js_compat($ciphertext, 0, $bpb), $expandedKey);
if(!$x)
{
$this->trigger_error('ECB block decryption routine returned false', E_USER_WARNING);
return false;
}
$pt = $this->concat($x, $pt);
if(!$pt)
{
$this->trigger_error('ECB concatenation routine returned false', E_USER_WARNING);
return false;
}
}
return $pt;
}
/**
* Wrapper for encryption.
* @param string $text the text to encrypt
* @param string $key the raw binary key to encrypt with
* @param int $return_encoding optional - can be ENC_BINARY, ENC_HEX or ENC_BASE64
*/
function encrypt($text, $key, $return_encoding = ENC_HEX)
{
if ( $text == '' )
return '';
if ( $this->mcrypt && $this->blockSizeInBits == mcrypt_module_get_algo_block_size(eval('return MCRYPT_RIJNDAEL_'.$this->keySizeInBits.';')) )
{
$iv_size = mcrypt_get_iv_size($this->mcrypt, MCRYPT_MODE_ECB);
$iv = mcrypt_create_iv($iv_size, MCRYPT_RAND);
$cryptext = mcrypt_encrypt($this->mcrypt, $key, $text, MCRYPT_MODE_ECB, $iv);
switch($return_encoding)
{
case ENC_HEX:
default:
$cryptext = $this->strtohex($cryptext);
break;
case ENC_BINARY:
$cryptext = $cryptext;
break;
case ENC_BASE64:
$cryptext = base64_encode($cryptext);
break;
}
}
else
{
$key = $this->prepare_string($key);
$text = $this->prepare_string($text);
$cryptext = $this->rijndaelEncrypt($text, $key, 'ECB');
if(!is_array($cryptext))
{
echo 'Warning: encryption failed for string: '.print_r($text,true).'<br />';
return false;
}
switch($return_encoding)
{
case ENC_HEX:
default:
$cryptext = $this->byteArrayToHex($cryptext);
break;
case ENC_BINARY:
$cryptext = $this->byteArrayToString($cryptext);
break;
case ENC_BASE64:
$cryptext = base64_encode($this->byteArrayToString($cryptext));
break;
}
}
return $cryptext;
}
/**
* Wrapper for decryption.
* @param string $text the encrypted text
* @param string $key the raw binary key used to encrypt the text
* @param int $input_encoding the encoding used for the encrypted string. Can be ENC_BINARY, ENC_HEX, or ENC_BASE64.
* @return string
*/
function decrypt($text, $key, $input_encoding = ENC_HEX)
{
if ( $text == '' )
return '';
switch($input_encoding)
{
case ENC_BINARY:
default:
break;
case ENC_HEX:
$text = $this->hextostring($text);
break;
case ENC_BASE64:
$text = base64_decode($text);
break;
}
//$mod = strlen($text) % $this->blockSizeInBits;
//if($mod != 96)
//die('modulus check failed: '.$mod);
if ( $this->mcrypt )
{
$iv_size = mcrypt_get_iv_size($this->mcrypt, MCRYPT_MODE_ECB);
$iv = mcrypt_create_iv($iv_size, MCRYPT_RAND);
$dypt = mcrypt_decrypt($this->mcrypt, $key, $text, MCRYPT_MODE_ECB, $iv);
}
else
{
$etext = $this->prepare_string($text);
$ekey = $this->prepare_string($key);
$mod = count($etext) % $this->blockSizeInBits;
$dypt = $this->rijndaelDecrypt($etext, $ekey, 'ECB');
if(!$dypt)
{
echo '<pre>'.print_r($dypt, true).'</pre>';
$this->trigger_error('Rijndael main decryption routine failed', E_USER_ERROR);
}
$dypt = $this->byteArrayToString($dypt);
}
return $dypt;
}
/**
* Enano-ese equivalent of str_split() which is only found in PHP5
* @param $text string the text to split
* @param $inc int size of each block
* @return array
*/
function enano_str_split($text, $inc = 1)
{
if($inc < 1) return false;
if($inc >= strlen($text)) return Array($text);
$len = ceil(strlen($text) / $inc);
$ret = Array();
for($i=0;$i<strlen($text);$i=$i+$inc)
{
$ret[] = substr($text, $i, $inc);
}
return $ret;
}
/**
* Generates a random key suitable for encryption
* @param int $len the length of the key, in bytes
* @return string a BINARY key
*/
function randkey($len = 32)
{
$key = '';
for($i=0;$i<$len;$i++)
{
$key .= chr(mt_rand(0, 255));
}
if ( file_exists('/dev/urandom') && is_readable('/dev/urandom') )
{
// Let's use something a little more secure
$ur = @fopen('/dev/urandom', 'r');
if ( !$ur )
return $key;
$ukey = @fread($ur, $len);
fclose($ur);
if ( strlen($ukey) != $len )
return $key;
return $ukey;
}
return $key;
}
/*
function byteArrayToString($arr)
{
if(!is_array($arr))
{
$this->trigger_error('First parameter should be an array', E_USER_WARNING);
return false;
}
$ret = '';
foreach($arr as $a)
{
if($a != 0) $ret .= chr($a);
}
return $ret;
}
*/
function strtohex($str)
{
$str = $this->enano_str_split($str);
$ret = '';
foreach($str as $s)
{
$chr = dechex(ord($s));
if(strlen($chr) < 2) $chr = '0' . $chr;
$ret .= $chr;
}
return $ret;
}
function gen_readymade_key()
{
$key = $this->strtohex($this->randkey($this->keySizeInBits / 8));
return $key;
}
function prepare_string($text)
{
$ret = $this->hexToByteArray($this->strtohex($text));
if(count($ret) != strlen($text))
{
die('Could not convert string "' . $text . '" to hex byte array for encryption');
}
return $ret;
}
/**
* Decodes a hex string.
* @param string $hex The hex code to decode
* @return string
*/
function hextostring($hex)
{
$hex = $this->enano_str_split($hex, 2);
$bin_key = '';
foreach($hex as $nibble)
{
$byte = chr(hexdec($nibble));
$bin_key .= $byte;
}
return $bin_key;
}
}
/**
* XXTEA encryption arithmetic library.
*
* Copyright (C) 2006 Ma Bingyao <andot@ujn.edu.cn>
* Version: 1.5
* LastModified: Dec 5, 2006
* This library is free. You can redistribute it and/or modify it.
*
* From dandaman32: I am treating this code as GPL, as implied by the license statement above.
*/
class TEACrypt extends AESCrypt {
function long2str($v, $w) {
$len = count($v);
$n = ($len - 1) << 2;
if ($w) {
$m = $v[$len - 1];
if (($m < $n - 3) || ($m > $n)) return false;
$n = $m;
}
$s = array();
for ($i = 0; $i < $len; $i++) {
$s[$i] = pack("V", $v[$i]);
}
if ($w) {
return substr(join('', $s), 0, $n);
}
else {
return join('', $s);
}
}
function str2long($s, $w) {
$v = unpack("V*", $s. str_repeat("\0", (4 - strlen($s) % 4) & 3));
$v = array_values($v);
if ($w) {
$v[count($v)] = strlen($s);
}
return $v;
}
function int32($n) {
while ($n >= 2147483648) $n -= 4294967296;
while ($n <= -2147483649) $n += 4294967296;
return (int)$n;
}
function encrypt($str, $key) {
if ($str == "")
{
return "";
}
$v = $this->str2long($str, true);
$k = $this->str2long($key, false);
if (count($k) < 4) {
for ($i = count($k); $i < 4; $i++) {
$k[$i] = 0;
}
}
$n = count($v) - 1;
$z = $v[$n];
$y = $v[0];
$delta = 0x9E3779B9;
$q = floor(6 + 52 / ($n + 1));
$sum = 0;
while (0 < $q--) {
$sum = $this->int32($sum + $delta);
$e = $sum >> 2 & 3;
for ($p = 0; $p < $n; $p++) {
$y = $v[$p + 1];
$mx = $this->int32((($z >> 5 & 0x07ffffff) ^ $y << 2) + (($y >> 3 & 0x1fffffff) ^ $z << 4)) ^ $this->int32(($sum ^ $y) + ($k[$p & 3 ^ $e] ^ $z));
$z = $v[$p] = $this->int32($v[$p] + $mx);
}
$y = $v[0];
$mx = $this->int32((($z >> 5 & 0x07ffffff) ^ $y << 2) + (($y >> 3 & 0x1fffffff) ^ $z << 4)) ^ $this->int32(($sum ^ $y) + ($k[$p & 3 ^ $e] ^ $z));
$z = $v[$n] = $this->int32($v[$n] + $mx);
}
return $this->long2str($v, false);
}
function decrypt($str, $key) {
if ($str == "") {
return "";
}
$v = $this->str2long($str, false);
$k = $this->str2long($key, false);
if (count($k) < 4) {
for ($i = count($k); $i < 4; $i++) {
$k[$i] = 0;
}
}
$n = count($v) - 1;
$z = $v[$n];
$y = $v[0];
$delta = 0x9E3779B9;
$q = floor(6 + 52 / ($n + 1));
$sum = $this->int32($q * $delta);
while ($sum != 0) {
$e = $sum >> 2 & 3;
for ($p = $n; $p > 0; $p--) {
$z = $v[$p - 1];
$mx = $this->int32((($z >> 5 & 0x07ffffff) ^ $y << 2) + (($y >> 3 & 0x1fffffff) ^ $z << 4)) ^ $this->int32(($sum ^ $y) + ($k[$p & 3 ^ $e] ^ $z));
$y = $v[$p] = $this->int32($v[$p] - $mx);
}
$z = $v[$n];
$mx = $this->int32((($z >> 5 & 0x07ffffff) ^ $y << 2) + (($y >> 3 & 0x1fffffff) ^ $z << 4)) ^ $this->int32(($sum ^ $y) + ($k[$p & 3 ^ $e] ^ $z));
$y = $v[0] = $this->int32($v[0] - $mx);
$sum = $this->int32($sum - $delta);
}
return $this->long2str($v, true);
}
}
?>